R&S®NRP
Power Meter and
R&S®NRP-Zxx
Power Sensors
Specifications

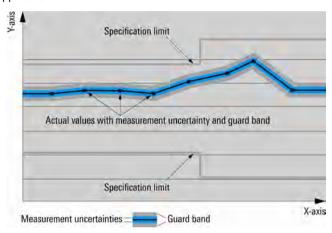
CONTENTS

Definitions		4
Overview o	f the R&S [®] NRP-Zxx power sensors	5
Specification	ons in brief of the R&S [®] NRP-Zxx power sensors	6
Universal p	ower sensors in R&S [®] Smart Sensor Technology™	8
R&S®NRP-	Z11/-Z21 universal power sensors	8
Uncertair	nty for absolute power measurements in dB	g
Uncertair	nty for relative power measurements in dB	10
R&S [®] NRP-	Z31 universal power sensor	11
Uncertair	nty for absolute power measurements in dB	12
Uncertair	nty for relative power measurements in dB	13
R&S [®] NRP-	Z22 universal power sensor	14
Uncertair	nty for absolute power measurements in dB	15
Uncertair	nty for relative power measurements in dB	15
R&S [®] NRP-	Z23 universal power sensor	16
Uncertair	nty for absolute power measurements in dB	17
Uncertair	nty for relative power measurements in dB	17
R&S [®] NRP-	Z24 universal power sensor	18
Uncertair	nty for absolute power measurements in dB	19
Uncertair	nty for relative power measurements in dB	19
Additional of	characteristics of the R&S [®] NRP-Z11/-Z21/-Z31/-Z22/-Z23/-Z24 universal power sensors	20
Power ratin	g of the R&S [®] NRP-Z22/-Z23/-Z24	22
Wideband բ	oower sensors in R&S [®] Smart Sensor Technology™	23
R&S [®] NRP-	Z81 wideband power sensor	23
Table A	Multipliers for zero offset, zero drift and noise specifications	24
Table B	Noise reduction factors for gating and smoothing	25
Table C	Noise reduction factors for averaging	25
Additional of	characteristics of the R&S [®] NRP-Z81 wideband power sensor	26
Thermal po	wer sensors in R&S [®] Smart Sensor Technology™	29
R&S [®] NRP-	Z51/-Z55 thermal power sensors	29
Additional of	characteristics of the R&S [®] NRP-Z51/-Z55 thermal power sensors	30
R&S [®] NRP-	Z56/-Z57 thermal power sensors	32
Additional of	characteristics of the R&S [®] NRP-Z56/-Z57 thermal power sensors	33
Average po	ower sensors in R&S [®] Smart Sensor Technology™	35
R&S [®] NRP-	Z91 average power sensor	35
Uncertair	nty for absolute power measurements in dB	36
Uncertair	nty for relative power measurements in dB	36

R&S®NRP-Z92 average power sensor	37
Uncertainty for absolute power measurements in dB	38
Uncertainty for relative power measurements in dB	38
Additional characteristics of the R&S®NRP-Z91/-Z92 average power sensors	39
Power rating of the R&S [®] NRP-Z92	40
Level control sensors in R&S [®] Smart Sensor Technology™	41
R&S®NRP-Z28 level control sensor	41
Uncertainty for absolute power measurements in dB	42
Uncertainty for relative power measurements in dB	43
R&S®NRP-Z98 level control sensor	44
Uncertainty for absolute power measurements in dB	45
Uncertainty for relative power measurements in dB	45
Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors	46
Power sensor modules in R&S [®] Smart Sensor Technology™	49
R&S®NRP-Z27/-Z37 power sensor modules	49
Additional characteristics of the R&S®NRP-Z27/-Z37 power sensor modules	50
Accessories for sensors	52
R&S [®] NRP-Z2 extension cables	52
R&S [®] NRP-Z3 active USB adapter	53
R&S [®] NRP-Z4 passive USB adapter cable	53
R&S [®] NRP-Z5 sensor hub	54
R&S®NRP base unit	55
Options for the R&S®NRP base unit	57
R&S [®] NRP-B1 sensor check source	57
R&S [®] NRP-B2 second test input	57
R&S®NRP-B4 Ethernet/LAN interface	57
R&S®NRP-B5 third and fourth test input	57
R&S®NRP-B6 rear panel assembly	57
General data	58
Appendix	59
Reading the uncertainty of three-path diode power sensors for relative power measurements	59
Ordering information	60
Eastnotes	61

Definitions

Product data applies under the following conditions:


- Three hours storage at the expected operating temperature followed by 30 minutes warm-up, unless otherwise stated
- · Specified environmental conditions met
- · Recommended calibration interval adhered to
- All internal automatic adjustments performed, if applicable

Specifications with limits

Describe warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as <, ≤, >, ≥, ±, or descriptions such as maximum and minimum.

Specifications in normal print refer to parameters where compliance is ensured by the design or derived from the measurement of related parameters.

Specifications in **bold** print are 100 % tested. Test limits have been narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable.

Specifications without limits

Describe warranted product performance by means of a representative value for the specified parameter. Limits are omitted whenever they are not relevant for the specification (e.g. dimensional data).

Typical values (typical)

Represent the population mean for the given parameter, derived from the design and/or production testing. Typical values are not warranted by Rohde & Schwarz.

Limits of uncertainty

Expanded uncertainties with a coverage factor of 2, calculated from the test assembly specifications and the modeled behavior of the sensor, including environmental conditions, aging, wear and tear, if applicable. The given values represent limits of uncertainty that are met by the Rohde & Schwarz instrument after calibration at a production or service site. Limits of uncertainty are indicated in italics and have been determined in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM).

Overview of the R&S®NRP-Zxx power sensors

Sensor type	Frequency range	Power range, max. average power / peak envelope power	Connector type
Universal powe	r sensors	max. average power / peak envelope power	type
R&S [®] NRP-Z11	10 MHz to 8 GHz	200 pW to 200 mW (-67 dBm to +23 dBm)	N
1100 1111 211	10 1011 12 10 0 01 12	max. 400 mW (AVG) / 1 W (PK, 10 μs)	1,1
R&S [®] NRP-Z21	10 MHz to 18 GHz	200 pW to 200 mW (–67 dBm to +23 dBm)	N
INGO IVINI -ZZI	10 10112 10 10 0112	max. 400 mW (AVG) / 1 W (PK, 10 µs)	
R&S [®] NRP-Z31	10 MHz to 33 GHz	200 pW to 200 mW (–67 dBm to +23 dBm)	3.5 mm
1100 11111 201	10 1111 12 10 00 01 12	max. 400 mW (AVG) / 1 W (PK, 10 µs)	0.0
R&S [®] NRP-Z22	10 MHz to 18 GHz	2 nW to 2 W (–57 dBm to +33 dBm)	N
NGO MINI ZEZ	10 1111 12 10 10 0112	max. 3 W (AVG) / 10 W (PK, 10 µs)	' '
R&S [®] NRP-Z23	10 MHz to 18 GHz	20 nW to 15 W (-47 dBm to +42 dBm)	N
		max. 18 W (AVG) / 100 W (PK, 10 µs)	
R&S [®] NRP-Z24	10 MHz to 18 GHz	60 nW to 30 W (–42 dBm to +45 dBm)	N
		max. 36 W (AVG) / 300 W (PK, 10 μs)	
Wideband power	er sensors		1
R&S [®] NRP-Z81	50 MHz to 18 GHz	1 nW to 100 mW (-60 dBm to +20 dBm)	N
		max. 200 mW (AVG) / 1 W (PK, 1 µs)	
Thermal power	sensors		1
R&S [®] NRP-Z51	DC to 18 GHz	1 μW to 100 mW (–30 dBm to +20 dBm)	N
		max. 300 mW (AVG) / 10 W (PK, 1 μs)	
R&S [®] NRP-Z55	DC to 40 GHz	1 μW to 100 mW (–30 dBm to +20 dBm)	2.92 mm
		max. 300 mW (AVG) / 10 W (PK, 1 μs)	
R&S [®] NRP-Z56	DC to 50 GHz	300 nW to 100 mW (-35 dBm to +20 dBm)	2.40 mm
		max. 300 mW (AVG) / 10 W (PK, 1 μs)	
R&S [®] NRP-Z57	DC to 67 GHz	300 nW to 100 mW (-35 dBm to +20 dBm)	1.85 mm
		max. 300 mW (AVG) / 10 W (PK, 1 μs)	
Average power	sensors		
R&S [®] NRP-Z91	9 kHz to 6 GHz	200 pW to 200 mW (-67 dBm to +23 dBm)	N
		max. 400 mW (AVG) / 1 W (PK, 10 μs)	
R&S [®] NRP-Z92	9 kHz to 6 GHz	2 nW to 2 W (-57 dBm to +33 dBm)	N
		max. 3 W (AVG) / 10 W (PK, 10 μs)	
Level control se			
R&S [®] NRP-Z28	10 MHz to 18 GHz	200 pW to 100 mW (-67 dBm to +20 dBm)	N
		max. 700 mW (AVG) / 4 W (PK, 10 μs)	
R&S [®] NRP-Z98	9 kHz to 6 GHz	200 pW to 100 mW (-67 dBm to +20 dBm)	N
		max. 700 mW (AVG) / 4 W (PK, 10 μs)	
Power sensor n			T
R&S [®] NRP-Z27	DC to 18 GHz	4 μW to 400 mW (–24 dBm to +26 dBm)	N
		max. 500 mW (AVG) / 30 W (PK, 1 μs)	1
R&S [®] NRP-Z37	DC to 26.5 GHz	4 μW to 400 mW (–24 dBm to +26 dBm)	3.5 mm
		max. 500 mW (AVG) / 30 W (PK, 1 μs)	

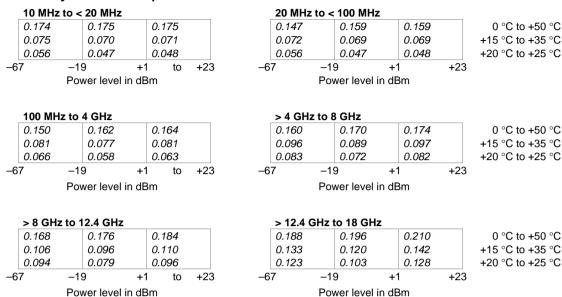
Specifications in brief of the R&S®NRP-Zxx power sensors

opeoinoutions in brief of				petrol collegio		
Sensor type	Impedance matching (SWR)	Rise time Video BW	Zero offset (typical)	Noise (typical)	Uncertainty for powe at +20 °C to +25 °C	ı
					absolute	relative
Universal powe		I	T			
R&S [®] NRP-Z11	10 MHz to 2.4 GHz: < 1.13				0.047 dB to 0.083 dB	0.022 dB to 0.066 dB
D.0.0®NIDD 704	> 2.4 GHz to 8.0 GHz: < 1.20				0.047 /0.400 /0.400	0.000 /D / 0.440 /D
R&S [®] NRP-Z21	10 MHz to 2.4 GHz: < 1.13				0.047 dB to 0.128 dB	0.022 dB to 0.110 dB
	> 2.4 GHz to 8.0 GHz: < 1.20		04 14/	40 144		
R&S [®] NRP-Z31	> 8.0 GHz to 18.0 GHz: < 1.25		64 pW	40 pW	0.054 /10 /- 0.407 /10	0.000 /D /- 0.440 /D
R&S NRP-231	10 MHz to 2.4 GHz: < 1.13 > 2.4 GHz to 8.0 GHz: < 1.20				0.051 dB to 0.137 dB	0.022 dB to 0.118 dB
	> 8.0 GHz to 18.0 GHz: < 1.25					
	> 18.0 GHz to 26.5 GHz: < 1.30					
	> 26.5 GHz to 33.0 GHz:< 1.35					
R&S [®] NRP-Z22	10 MHz to 2.4 GHz: < 1.14	< 8 µs	0.7 nW	0.4 nW	0.079 dB to 0.178 dB	0.022 dB to 0.112 dB
NGO IVINI ZZZ	> 2.4 GHz to 8.0 GHz: < 1.20	> 50 kHz	0.7 1100	0.41111	0.070 dB to 0.770 dB	0.022 dB to 0.772 dB
	> 8.0 GHz to 12.4 GHz: < 1.25					
	> 12.4 GHz to 18.0 GHz:< 1.30					
R&S [®] NRP-Z23	10 MHz to 2.4 GHz: < 1.14		7 nW	4 nW	0.078 dB to 0.199 dB	0.022 dB to 0.110 dB
	> 2.4 GHz to 8.0 GHz: < 1.25					
	> 8.0 GHz to 12.4 GHz: < 1.30					
	> 12.4 GHz to 18.0 GHz:< 1.41					
R&S [®] NRP-Z24	10 MHz to 2.4 GHz: < 1.14		20 nW	13 nW	0.078 dB to 0.222 dB	0.022 dB to 0.110 dB
	> 2.4 GHz to 8.0 GHz: < 1.25					
	> 8.0 GHz to 12.4 GHz: < 1.30					
	> 12.4 GHz to 18.0 GHz:< 1.41					
Wideband power						
R&S [®] NRP-Z81	50 MHz to 2.4 GHz: < 1.16				0.130 dB to 0.150 dB	_
	> 2.4 GHz to 8.0 GHz: < 1.20	< 13 ns	220 pW	110 pW		
	> 8.0 GHz to 18.0 GHz: < 1.25	> 30 MHz				
Thermal power	sensors					
R&S [®] NRP-Z51	DC to 2.4 GHz: < 1.10				0.052 dB to 0.100 dB	0.032 dB
	> 2.4 GHz to 12.4 GHz: < 1.15					
	> 12.4 GHz to 18.0 GHz:< 1.20					
R&S [®] NRP-Z55	DC to 2.4 GHz: < 1.10		33 nW	20 nW	0.057 dB to 0.114 dB	0.032 dB
	> 2.4 GHz to 12.4 GHz: < 1.15					
	> 12.4 GHz to 18.0 GHz:< 1.20					
	> 18.0 GHz to 26.5 GHz:< 1.25					
	> 26.5 GHz to 40.0 GHz:< 1.30	_				
R&S [®] NRP-Z56	DC to 100 MHz: < 1.03				0.040 dB to 0.142 dB	0.010 dB
	> 100 MHz to 2.4 GHz: < 1.06					
	> 2.4 GHz to 12.4 GHz: < 1.13					
	> 12.4 GHz to 18.0 GHz:< 1.16					
	> 18.0 GHz to 26.5 GHz:< 1.22					
	> 26.5 GHz to 40.0 GHz:< 1.28					
	> 40.0 GHz to 50.0 GHz:< 1.30		15 nW	15 nW		
R&S [®] NRP-Z57	DC to 100 MHz: < 1.03				0.040 dB to 0.248 dB	0.010 dB
	> 100 MHz to 2.4 GHz: < 1.06					
	> 2.4 GHz to 12.4 GHz: < 1.13					
	> 12.4 GHz to 18.0 GHz: < 1.16					
	> 18.0 GHz to 26.5 GHz: < 1.22					
	> 26.5 GHz to 40.0 GHz: < 1.28					
	> 40.0 GHz to 50.0 GHz: < 1.30 > 50.0 GHz to 67.0 GHz: < 1.35					
	> 50.0 GHZ to 07.0 GHZ. < 1.35		<u> </u>			

Specifications in brief of the R&S®NRP-Zxx power sensors (continued)

Sensor type	Impedance matching (SWR)	Rise time Zero offset Video BW (typical)	Noise (typical)	Uncertainty for power measurements at +20 °C to +25 °C		
			, ,	``.	absolute	relative
Average power	sensors					
R&S [®] NRP-Z91	9 kHz to 2.4 GHz: < 1.13		64 pW	40 pW	0.047 dB to 0.083 dB	0.022 dB to 0.066 dB
	> 2.4 GHz to 6.0 GHz: < 1.20	_				
R&S [®] NRP-Z92	10 MHz to 2.4 GHz: < 1.14		0.7 nW	0.4 nW	0.079 dB to 0.151 dB	0.022 dB to 0.087 dB
	> 2.4 GHz to 6.0 GHz: < 1.20					
Level control se	ensors					
R&S [®] NRP-Z28	10 MHz to 2.4 GHz: < 1.11	< 8 µs			0.047 dB to 0.130 dB	0.022 dB to 0.110 dB
	> 2.4 GHz to 4.0 GHz: < 1.15	> 50 kHz				
	> 4.0 GHz to 8.0 GHz: < 1.22					
	> 8.0 GHz to 18 GHz: < 1.30		67 pW	42 pW		
R&S [®] NRP-Z98	9 kHz to 2.4 GHz: < 1.11	_		'	0.047 dB to 0.083 dB	0.022 dB to 0.066 dB
	> 2.4 GHz to 4.0 GHz: < 1.15					
	> 4.0 GHz to 6.0 GHz: < 1.22					
Power sensor n	nodules					
R&S [®] NRP-Z27	DC to 2.0 GHz: < 1.15	_			0.070 dB to 0.112 dB	0.032 dB
	> 2.0 GHz to 4.2 GHz: < 1.18					
	> 4.2 GHz to 8.0 GHz: < 1.23					
	> 8.0 GHz to 12.4 GHz: < 1.25					
	> 12.4 GHz to 18.0 GHz:< 1.35		200 nW	120 nW		
R&S [®] NRP-Z37	DC to 2.0 GHz: < 1.15	_			0.070 dB to 0.122 dB	0.032 dB
	> 2.0 GHz to 4.2 GHz: < 1.18					
	> 4.2 GHz to 8.0 GHz: < 1.23					
	> 8.0 GHz to 12.4 GHz: < 1.25					
	> 12.4 GHz to 18.0 GHz:< 1.30					
	> 18.0 GHz to 26.5 GHz:< 1.45					

Universal power sensors in R&S[®]Smart Sensor Technology™


R&S®NRP-Z11/-Z21 universal power sensors

Specifications from 8 GHz to 18 GHz apply only to the R&S $^{\!0}NRP\text{-}Z21.$

Frequency range	R&S [®] NRP-Z11	10 MHz to 8 GHz				
	R&S [®] NRP-Z21	10 MHz to 18 GHz				
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.13 (1.11)				
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)	(): +15 °C to +35 °C			
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)				
Power measurement range	Continuous Average	200 pW to 200 mW (-67	dBm to +23 dBm)			
_	Burst Average	200 nW to 200 mW (-37	dBm to +23 dBm)			
	Timeslot/Gate Average	600 pW to 200 mW (-62				
	Trace	10 nW to 200 mW (-50 d	Bm to +23 dBm) 2			
Max. power	average power	0.4 W (+26 dBm), continu	ious			
	peak envelope power	1.0 W (+30 dBm) for max	. 10 µs			
Measurement subranges	path 1	-67 dBm to -14 dBm				
_	path 2	-47 dBm to +6 dBm				
	path 3	-27 dBm to +23 dBm				
Transition regions	with automatic path selection, user-	(-19 ± 1) dBm to (-13 ± 1) dBm			
•	defined crossover ³ set to 0 dB	$(+1 \pm 1)$ dBm to $(+7 \pm 1)$ d				
Dynamic response	video bandwidth	> 50 kHz (100 kHz)				
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C			
	rise time 10 %/90 %	< 8 µs (4 µs)				
Acquisition	sample rate (continuous)	133.358 kHz (default) or	119.467 kHz ⁴			
Triggering	internal					
	threshold level range	-40 dBm to +23 dBm				
	threshold level accuracy identical to uncertainty for absolute po					
	· ·	·				
	threshold level hysteresis					
	dropout ⁵	dropout ⁵ 0 s to 10 s				
	external	see R&S®NRP and				
		R&S®NRP-Z3 USB adapter				
	slope (external, internal)	pos./neg.				
	delay	-5 ms to +100 s				
	hold-off	0 s to 10 s				
	resolution (delay, hold-off, dropout)	sample period (≈ 8 µs)				
	source	internal, external, immedi	ate, bus, hold			
Zero offset ⁶	initial, without zeroing					
	path 1	< 470 [500] (100) pW				
	path 2	< 47 [50] (10) nW				
	path 3	< 4.7 [5] (1) μW	_			
		ζ 4.7 [5] (1) μνν				
	after external zeroing 6 7	40454407 (04) 144	(): typical at 1 GHz			
	path 1	< 104 [110] (64) pW	+15 °C to +35 °C			
	path 2	< 10 [11] (6) nW				
3 1 10 8	path 3	< 1.0 [1.1] (0.6) µW	[]: 8 GHz to 18 GHz			
Zero drift ⁸	path 1	< 35 [37] (0) pW				
	path 2	< 3.0 [3.2] (0) nW				
9	path 3	< 0.30 [0.32] (0) µW				
Measurement noise 9	path 1	< 65 [69] (40) pW				
	path 2		< 6.3 [6.6] (4.0) nW			
	path 3	< 0.63 [0.66] (0.4) µW				

R&S®NRP-Z11/-Z21 universal power sensors (continued)

Uncertainty for absolute power measurements 10 in dB

R&S®NRP-Z11/-Z21 universal power sensors (continued)

Uncertainty for relative power measurements ¹¹ in dB

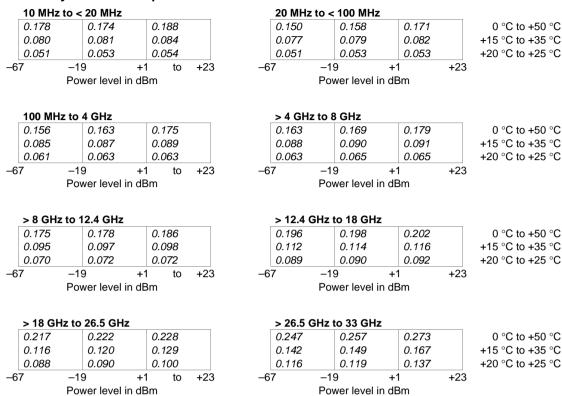
	10 MHz	z to <	20 MHz				
+23	0.226		0.229		0.027		
	0.084		0.080		0.022		
+7	0.046		0.044		0.022		
+1	0.226		0.027		0.229		
	0.083		0.022		0.080		
-13	0.045		0.022		0.044		
-19	0.023		0.226		0.226		
	0.022		0.083		0.084		
-67	0.022		0.045		0.046		
-6	7	-19/-	-13	+1/-	+7	+23	
Power level in dBm							

	20 MHz	z to < 1	100 MHz	:			
+23	0.206		0.215		0.027		0 °C to +50 °C
	0.082		0.078		0.022		+15 °C to +35 °C
+7	0.046		0.044		0.022		+20 °C to +25 °C
+1	0.205		0.027		0.215		0 °C to +50 °C
	0.081		0.022		0.078		+15 °C to +35 °C
-13	0.044		0.022		0.044		+20 °C to +25 °C
-19	0.023		0.205		0.206		0 °C to +50 °C
	0.022		0.081		0.082		+15 °C to +35 °C
-67	0.022		0.044		0.046		+20 °C to +25 °C
-6	67	-19/-	-13	+1/	/ + 7	+23	
		Power	level in	dBr	m		

	100 MH	Iz to	4	GHz			
+23	0.209			0.218		0.038	
	0.088			0.085		0.032	
+7	0.055			0.047		0.031	
+1	0.206			0.028		0.218	
	0.083			0.022		0.085	
-13	0.048			0.022		0.047	
-19	0.023			0.206		0.209	
	0.022			0.083		0.088	
-67	0.022			0.048		0.055	
- 67		-19	9/—	13	+	1/+7	+23
Power level in dBm							

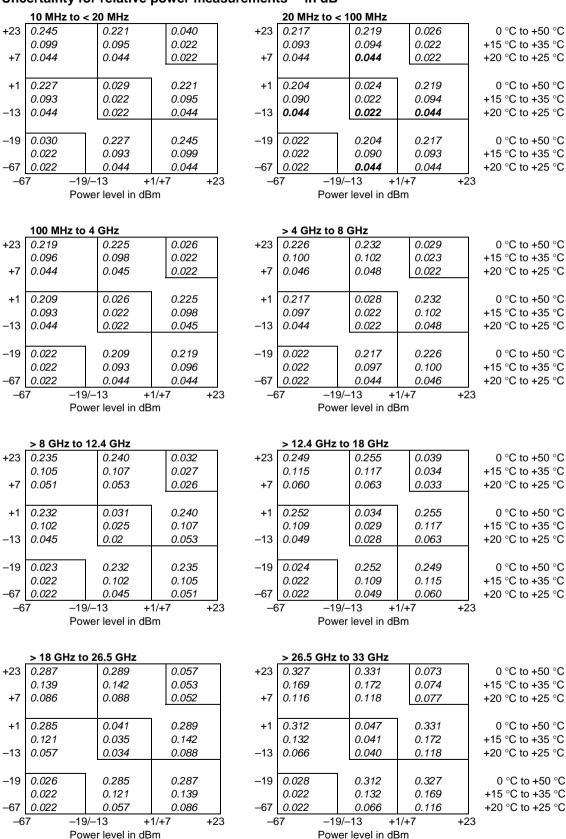
	> 4 GF	lz to 8	3 GHz				
+23	0.215		0.223		0.049		0 °C to +50 °C
	0.097		0.093		0.044		+15 °C to +35 °C
+7	0.066		0.059		0.043		+20 °C to +25 °C
+1	0.210		0.030		0.223		0 °C to +50 °C
	0.088		0.022		0.093		+15 °C to +35 °C
-13	0.054		0.022		0.059		+20 °C to +25 °C
-19	0.024		0.210		0.215		0 °C to +50 °C
	0.022		0.088		0.097		+15 °C to +35 °C
-67	0.022		0.054		0.066		+20 °C to +25 °C
-6	67	-19	/–13	+1/+	-7	+23	
		Pow	er level in	dBm			

> 8 GHz to 12.4 GHz										
+23	0.224		0.231		0.064					
	0.111		0.106		0.061					
+7	0.084		0.077		0.060					
+1	0.216		0.034		0.231					
	0.096		0.027		0.106					
-13	0.063		0.025		0.077					
-19	0.024		0.216		0.224					
	0.022		0.096		0.111					
-67	0.022		0.063		0.084					
-6	7	-19/-	–13	+1	1/+7	+23	3			
Power level in dBm										


	> 12.4	GHz t	o 18 GHz	<u>:</u>			
+23	0.244		0.245		0.086		0 °C to +50 °C
	0.135		0.128		0.084		+15 °C to +35 °C
+7	0.110		0.102		0.083		+20 °C to +25 °C
+1	0.230		0.040		0.245		0 °C to +50 °C
	0.112		0.034		0.128		+15 °C to +35 °C
-13	0.079		0.033		0.102		+20 °C to +25 °C
-19	0.024		0.230		0.244		0 °C to +50 °C
	0.022		0.112		0.135		+15 °C to +35 °C
-67	0.022		0.079		0.110		+20 °C to +25 °C
-6	67	-19/	/ –13	+1/+	7	+23	
Power level in dBm							

R&S®NRP-Z31 universal power sensor

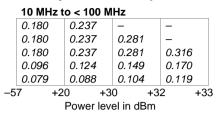
Frequency range		10 MHz to 33 GHz				
Impedance matching (SWR)	10 MHz to 2.4 GHz	, ,				
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)				
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)	(): +15 °C to +35 °C			
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)				
	> 26.5 GHz to 33.0 GHz	< 1.35 (1.33)				
Power measurement range	Continuous Average	200 pW to 200 mW (-67				
	Burst Average	200 nW to 200 mW (-37	dBm to +23 dBm)			
	Timeslot/Gate Average	600 pW to 200 mW (-62				
	Trace	10 nW to 200 mW (-50 d	dBm to +23 dBm) 2			
Max. power	average power	0.4 W (+26 dBm), continuous				
	peak envelope power	1.0 W (+30 dBm) for max. 10 µs				
Measurement subranges	path 1	-67 dBm to -14 dBm				
	path 2	-47 dBm to +6 dBm				
	path 3	-27 dBm to +23 dBm				
Transition regions	with automatic path selection, user-	(-19 ± 1) dBm to (-13 ±	1) dBm			
	defined crossover ³ set to 0 dB					
Dynamic response	video bandwidth	> 50 kHz (100 kHz)				
•	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C			
	rise time 10 %/90 %	< 8 µs (4 µs)				
Acquisition	sample rate (continuous)	133.358 kHz (default) or 119.467 kHz ⁴				
Triggering	internal					
	threshold level range	nge -40 dBm to +23 dBm				
	threshold level accuracy	identical to uncertainty for absolute power				
	•	measurements				
	threshold level hysteresis	0 dB to 10 dB				
	dropout ⁵	0 s to 10 s				
	external	see R&S®NRP and				
		R&S [®] NRP-Z3 USB adapter				
	slope (external, internal)	pos./neg.				
	delay	-5 ms to +100 s				
	hold-off	0 s to 10 s				
	resolution (delay, hold-off, dropout)	sample period (≈ 8 µs)				
	source	internal, external, immed	diate, bus, hold			
Zero offset	initial, without zeroing	· · · · · · · · · · · · · · · · · · ·				
	path 1	< 470 [500] (100) pW				
	path 2	< 47 [50] (10) nW				
	'	'				
	path 3	< 2.4 [2.5] (0.5) µW	(): typical at 1 GHz			
	after external zeroing 6 7		+15 °C to +35 °C			
	path 1	< 104 [113] (64) pW				
	path 2	< 10 [11] (6) nW	[]: 8 GHz to 33 GHz			
	path 3	< 0.5 [0.6] (0.3) μW				
Zero drift ⁸	path 1	< 35 [38] (0) pW				
	path 2	< 3.0 [3.3] (0) nW				
	path 3	< 0.15 [0.18] (0) µW				
Measurement noise 9	path 1	< 65 [71] (40) pW				
	path 2	< 6.3 [6.8] (4.0) nW				
	path 3	< 0.32 [0.37] (0.2) µW				

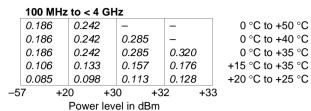

R&S®NRP-Z31 universal power sensor (continued)

Uncertainty for absolute power measurements 10 in dB

R&S®NRP-Z31 universal power sensor (continued)

Uncertainty for relative power measurements 11 in dB


R&S®NRP-Z22 universal power sensor


Specifications apply if the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S®NRP-Z21 when operating the power sensor section alone.

Frequency range		10 MHz to 18 GHz					
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14					
	> 2.4 GHz to 8.0 GHz	< 1.20					
	> 8.0 GHz to 12.4 GHz	< 1.25					
	> 12.4 GHz to 18.0 GHz	< 1.30					
Power measurement range	Continuous Average	2 nW to 2 W (-57 dBm	to +33 dBm)				
	Burst Average	2 μW to 2 W (-27 dBm	to +33 dBm)				
	Timeslot/Gate Average	6 nW to 2 W (-52 dBm					
	Trace	100 nW to 2 W (-40 dB	m to +33 dBm) 2				
Max. power	average power	3 W (+35 dBm), continu	ious (see diagram)				
	peak envelope power	10 W (+40 dBm) for ma	x. 10 μs				
Measurement subranges	path 1	-57 dBm to -4 dBm					
	path 2	-37 dBm to +16 dBm					
	path 3	-17 dBm to +33 dBm					
Transition regions	with automatic path selection, user-	(-9 ± 1.5) dBm to $(-3 \pm$	1.5) dBm				
	defined crossover 3 set to 0 dB	(+11 ± 1.5) dBm to (+17	7 ± 1.5) dBm				
Dynamic response	video bandwidth	> 50 kHz (100 kHz)					
•	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °				
	rise time 10 %/90 %	< 8 µs (4 µs)					
Acquisition	sample rate (continuous)	133.358 kHz (default) or 119.467 kHz ⁴					
Triggering	internal						
	threshold level range	-30 dBm to +33 dBm					
	threshold level accuracy	identical to uncertainty	for absolute power				
		measurements					
	threshold level hysteresis	0 dB to 10 dB					
	dropout ⁵	0 s to 10 s					
	external	see R&S [®] NRP and					
		R&S®NRP-Z3 USB adapter					
	slope (external, internal)	pos./neg.					
	delay	–5 ms to +100 s					
	hold-off	0 s to 10 s					
	resolution (delay, hold-off, dropout)	sample period					
	source	internal, external, imme	diate, bus, hold				
Zero offset	initial, without zeroing						
	path 1	< 5.9 (1.2) nW					
	path 2	< 590 (120) nW					
	path 3	< 59 (12) μW					
	after external zeroing 6 7						
	path 1	< 1.3 (0.7) nW					
	path 2	< 120 (60) nW (): typical at 1					
	path 3	< 12 (6) µW	+15 °C to +35 °C				
Zero drift ⁸	path 1	< 0.4 (0) nW					
	path 2	< 40 (0) nW					
	path 3	< 4 (0) µW					
Measurement noise ⁹	path 1	< 0.8 (0.4) nW					
	path 2	< 80 (40) nW					
	path 3	< 8 (4) μW					

R&S®NRP-Z22 universal power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

	4 GHz to	< 12.4 G	Hz				
	0.203	0.255	_	_			
	0.203	0.255	0.296	-			
	0.203	0.255	0.296	0.330			
	0.133	0.156	0.176	0.194			
	0.116	0.125	0.137	0.151			
-5	7 +2	0 +3	30 +	32	+33		
Power level in dBm							

	12.4 GHz	z to < 18 C	3Hz						
	0.223	0.271	-	-	0 °C to +50 °C				
	0.223	0.271	0.310	-	0 °C to +40 °C				
	0.223	0.271	0.310	0.343	0 °C to +35 °C				
	0.163	0.182	0.199	0.215	+15 °C to +35 °C				
	0.147	0.155	0.165	0.178	+20 °C to +25 °C				
-5	7 +2	20 +3	i0 +:	32 +3	3				
	Power level in dBm								

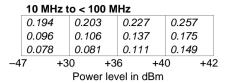
Uncertainty for relative power measurements in dB $^{11\,12}$

	10 MH	z to <	100 MH	z			
+30	0.286		0.298		0.031		
	0.108		0.109		0.022		
+18	0.052		0.045		0.022		
+10	0.283		0.031		0.298		
	0.108		0.022		0.109		
-2	0.051		0.022		0.045		
-10	0.023		0.283		0.286		
	0.022		0.108		0.108		
-57	0.022		0.051		0.052		
-5	7	-10/-	2	+10)/+18	+30	
Power level in dBm							

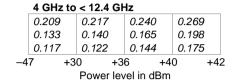
	is iii ub			
	100 MHz 1	to 4 GHz		
+30	0.272	0.289	0.041	0 °C to +50 °C
	0.112	0.113	0.032	+15 °C to +35 °C
+18	0.060	0.053	0.031	+20 °C to +25 °C
			_	
+10	0.268	0.032	0.289	0 °C to +50 °C
	0.108	0.022	0.113	+15 °C to +35 °C
-2	0.054	0.022	0.053	+20 °C to +25 °C
-10	0.024	0.268	0.272	0 °C to +50 °C
	0.022	0.108	0.112	+15 °C to +35 °C
-57	0.022	0.054	0.060	+20 °C to +25 °C
-57	7 –1	0/–2 +10	0/+18 +3	30
	F	Power level in o	dBm	

	> 4 Gł	Iz to	12.4	4 GHz				
+30	0.284		(0.299			0.066	
	0.131		(0.130			0.061	
+18	0.087		(0.081			0.060	
						_		
+10	0.277		(0.037			0.299	
	0.118		(0.027			0.130	
-2	0.068		(0.025			0.081	
-10	0.024		().277			0.284	
	0.022		(0.118			0.131	
-57	0.022		(0.068			0.087	
-5	7	-10	/–2		+1	0/+	18	+30
Power level in dBm								

	> 12.4 GH	z to 18 GHz					
+30	0.300	0.310	0.088	0 °C to +50 °C			
	0.152	0.148	0.084	+15 °C to +35 °C			
+18	0.112	0.106	0.083	+20 °C to +25 °C			
+10	0.288	0.043	0.310	0 °C to +50 °C			
	0.131	0.035	0.148	+15 °C to +35 °C			
-2	0.082	0.033	0.106	+20 °C to +25 °C			
-10	0.024	0.288	0.300	0 °C to +50 °C			
	0.022	0.131	0.152	+15 °C to +35 °C			
-57	0.022	0.082	0.112	+20 °C to +25 °C			
-5	7 –10	0/–2 +10	0/+18 +	-3 0			
Power level in dBm							


R&S®NRP-Z23 universal power sensor

Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the $R\&S^{\otimes}NRP-Z21$ when operating the power sensor section alone.


Frequency range	10 MHz to 18 GHz					
Impedance matching (SWR)	10 MHz to 2.4 GHz < 1.14					
,	> 2.4 GHz to 8.0 GHz	< 1.25				
	> 8.0 GHz to 12.4 GHz	< 1.30				
	> 12.4 GHz to 18.0 GHz	< 1.41				
Power measurement range	Continuous Average	20 nW to 15 W (-47 dBm	to +42 dBm)			
ower measurement range	Burst Average	20 μW to 15 W (-17 dBm				
	Timeslot/Gate Average	60 nW to 15 W (-42 dBm to +42 dBm) 1				
	Trace	1 μW to 15 W (-30 dBm to				
Max. power	average power	18 W (+42.5 dBm), continuous (see diagram)				
·	peak envelope power	100 W (+50 dBm) for max				
Measurement subranges	path 1	-47 dBm to +6 dBm	•			
_	path 2	-27 dBm to +26 dBm				
	path 3	-7 dBm to +42 dBm				
Transition regions	with automatic path selection, user-	(+1 ± 1.75) dBm to (+7 ± 1	1.75) dBm			
•	defined crossover 3 set to 0 dB	(+21 ± 1.75) dBm to (+27				
Dynamic response	video bandwidth	> 50 kHz (100 kHz)	,			
	single-shot bandwidth	> 50 kHz (100 kHz) (): +15 °C to +				
	rise time 10 %/90 %	< 8 µs (4 µs)				
Acquisition	sample rate (continuous)	133.358 kHz (default) or 119.467 kHz ⁴				
Triggering						
	threshold level range					
	threshold level accuracy	identical to uncertainty for	absolute power			
		measurements				
	threshold level hysteresis	0 dB to 10 dB				
	dropout ⁵	0 s to 10 s				
	external	see R&S [®] NRP and				
		R&S®NRP-Z3 USB adapter				
	slope (external, internal)	pos./neg.				
	delay	–5 ms to +100 s				
	hold-off	0 s to 10 s				
	resolution (delay, hold-off, dropout)	sample period				
	source	internal, external, immedia	ate, bus, hold			
Zero offset	initial, without zeroing					
	path 1	< 60 (12) nW				
	path 2	< 6 (1.2) μW				
	path 3	< 600 (120) µW				
	after external zeroing 6 7					
	path 1	< 13 (7) nW				
	path 2	< 1.3 (0.6) µW (): typica				
	path 3	< 130 (60) μW +15 °C to +3				
Zero drift ⁸	path 1	< 5 (0) nW				
	path 2	< 0.4 (0) μW				
	path 3	< 40 (0) µW				
Measurement noise 9	path 1	< 8 (4) nW				
	path 2	< 0.8 (0.4) µW				
	path 3	< 80 (40) µW				

R&S®NRP-Z23 universal power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

	12.4 GHz	z to < 18 G	Hz						
	0.238	0.245	0.266	0.292	0 °C to +50 °C				
	0.166	0.172	0.193	0.221	+15 °C to +35 °C				
	0.151	0.155	0.172	0.199	+20 °C to +25 °C				
-4	7 +3	0 +3	6 +4	0 +42	2				
	Power level in dBm								

Uncertainty for relative power measurements in dB $^{\rm 11\ 12}$

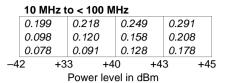
10 MHz to < 100 MHz									
+42	0.226		0.229		0.027				
	0.084		0.080		0.022				
+28	0.046		0.044		0.022				
+20	0.226		0.027		0.229				
	0.083		0.022		0.080				
+8	0.045		0.022		0.044				
±0	0.023		0.226		0.226				
	0.022		0.083		0.084				
-47	0.022		0.045		0.046				
_4	17	±0/+8	3	+20/+	-28	+42			
Power level in dBm									

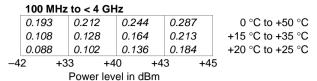
	100 MH	z to 4 (3Hz			
+42	0.209	(0.218	0.038		0 °C to +50 °C
	0.088	(0.085	0.032		+15 °C to +35 °C
+28	0.055	(0.047	0.031		+20 °C to +25 °C
+20	0.206	(0.028	0.218		0 °C to +50 °C
	0.083	(0.022	0.085		+15 °C to +35 °C
+8	0.048	(0.022	0.047		+20 °C to +25 °C
		·				
±0	0.023	(0.206	0.209		0 °C to +50 °C
	0.022	(0.083	0.088		+15 °C to +35 °C
-47	0.022	(0.048	0.055		+20 °C to +25 °C
-4	7 :	±0/+8	+20)/+28	+42	

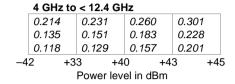
Power level in dBm

	> 4 GHz to 12.4 GHz						
+42	0.224		0.231		0.064	4	
	0.111		0.106		0.06	1	
+28	0.084		0.077		0.060)	
+20	0.216		0.034		0.23	1	
	0.096		0.027		0.10	6	
+8	0.063		0.025		0.07	7	
±0	0.024		0.216		0.224	4	
	0.022		0.096		0.11	1	
-47	0.022		0.063		0.084	4	
-4	7	±0/+	8	+20)/+28	+42	
		Pow	er level	in dl	3m		

	> 12.4 G	Hz to 18 GHz			
+42	0.244	0.245	0.086		0 °C to +50 °C
	0.135	0.128	0.084		+15 °C to +35 °C
+28	0.110	0.102	0.083		+20 °C to +25 °C
			·		
+20	0.230	0.040	0.245		0 °C to +50 °C
	0.112	0.034	0.128		+15 °C to +35 °C
+8	0.079	0.033	0.102		+20 °C to +25 °C
±0	0.024	0.230	0.244		0 °C to +50 °C
	0.022	0.112	0.135		+15 °C to +35 °C
-47	0.022	0.079	0.110		+20 °C to +25 °C
-4	7	±0/+8 +	20/+28	+42	
		Power level in	n dBm		


R&S®NRP-Z24 universal power sensor


Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the $R\&S^{\otimes}NRP-Z21$ when operating the power sensor section alone.


Frequency range		10 MHz to 18 GHz		
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14		
	> 2.4 GHz to 8.0 GHz	< 1.25		
	> 8.0 GHz to 12.4 GHz	< 1.30		
	> 12.4 GHz to 18 GHz	< 1.41		
Power measurement range	Continuous Average	60 nW to 30 W (-42 dBm	n to +45 dBm)	
3	Burst Average	60 μW to 30 W (–12 dBm		
	Timeslot/Gate Average	0.2 μW to 30 W (–37 dBm to +45 dBm) ¹		
	Trace	3 μW to 30 W (–25 dBm		
Max. power	average power	36 W (+45.5 dBm), continuous (see diagram)		
	peak envelope power	300 W (+45.5 dBm) for max. 10 µs		
Measurement subranges	path 1	-42 dBm to +11 dBm		
3 · ·	path 2	-22 dBm to +31 dBm		
	path 3	-2 dBm to +45 dBm		
Transition regions	with automatic path selection, user-	$(+6 \pm 2)$ dBm to $(+12 \pm 2)$) dBm	
	defined crossover ³ set to 0 dB	$(+26 \pm 2)$ dBm to $(+32 \pm 2)$		
Dynamic response	video bandwidth	> 50 kHz (100 kHz)		
,	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C	
	rise time 10 %/90 %	< 8 µs (4 µs)		
Acquisition	sample rate (continuous)	133.358 kHz (default) or 119.467 kHz ⁴		
Triggering	internal	((((((((((((((((((((
999	threshold level range —14 dBm to +45 dBm			
	threshold level accuracy	identical to uncertainty fo	r absolute power	
	,	measurements	, p	
	threshold level hysteresis	0 dB to 10 dB		
	dropout ⁵	0 s to 10 s		
	external	see R&S®NRP and		
		R&S®NRP-Z3 USB adapter		
	slope (external, internal)	pos./neg.		
	delay	-5 ms to +100 s		
	hold-off	0 s to 10 s		
	resolution (delay, hold-off, dropout)	sample period		
	source	internal, external, immed	iate, bus, hold	
Zero offset	initial, without zeroing	,,	,,	
	path 1	< 200 (40) nW		
	path 2	< 20 (40) 11VV < 20 (4) μW		
	path 3	< 20 (4) μVV < 2 (0.4) mW		
	after external zeroing ^{6 7}	< 2 (0.4) HIVV		
	path 1	44 (00) 7111		
	I TO TO THE TOTAL THE TOTAL TO THE TOTAL TOT	< 44 (20) nW	(): typical at 1 GHz	
	path 2	< 4.2 (2) μνν 115 °C to 13		
Zero drift ⁸	path 3	< 0.42 (0.2) mW		
Zero ariit	path 1	< 15 (0) nW		
	path 2	< 1.3 (0) μW		
M	path 3	< 130 (0) µW		
Measurement noise 9	path 1	< 27 (13) nW		
	path 2	< 2.6 (1.2) µW		
	path 3	< 0.26 (0.12) mW		

R&S®NRP-Z24 universal power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

	12.4 GHz	z to < 18 G	Hz		
	0.242	0.258	0.284	0.322	0 °C to +50 °C
	0.167	0.181	0.208	0.248	+15 °C to +35 °C
	0.151	0.160	0.183	0.222	+20 °C to +25 °C
-4	2 +3	3 +4	0 +4	3 +45	5
		Power lev	el in dBm		

Uncertainty for relative power measurements in dB $^{11\ 12}$

10 MHz to < 100 MHz						
+45	0.226	0.229	0.027			
	0.084	0.080	0.022			
+33	0.046	0.044	0.022			
+25	0.226	0.027	0.229			
	0.083	0.022	0.080			
+13	0.045	0.022	0.044			
+5	0.023	0.226	0.226			
	0.022	0.083	0.084			
-42	0.022	0.045	0.046			
-4	-42 +5/+13 +25/+33 +45					
	Powe	r level in dBm				

	100 MHz	to 4 GHz		
+45	0.209	0.218	0.038	0 °C to +50 °C
	0.088	0.085	0.032	+15 °C to +35 °C
+33	0.055	0.047	0.031	+20 °C to +25 °C
			_	
+25	0.206	0.028	0.218	0 °C to +50 °C
	0.083	0.022	0.085	+15 °C to +35 °C
+13	0.048	0.022	0.047	+20 °C to +25 °C
		_		
+5	0.023	0.206	0.209	0 °C to +50 °C
	0.022	0.083	0.088	+15 °C to +35 °C
-42	0.022	0.048	0.055	+20 °C to +25 °C
-4	2 +5	/+13 +25	5/+33 -	+45

Power level in dBm

> 4 GHz to 12.4 GHz						
+45	0.224		0.231		0.064	
	0.111		0.106		0.061	
+33	0.084		0.077		0.060	
+25	0.216		0.034		0.231	
	0.096		0.027		0.106	
+13	0.063		0.025		0.077	
+5	0.024		0.216		0.224	
	0.022		0.096		0.111	
-42	0.022		0.063		0.084	
-42	2	+5/+1	3	+25/+	-33	+45

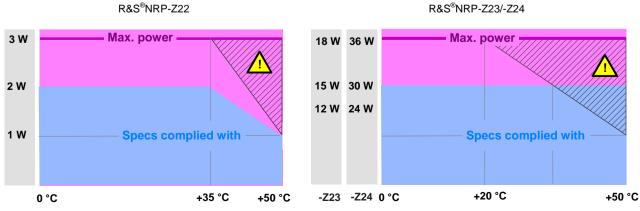
Power level in dBm

	> 12.4 GH	z to 18 GHz		
+45	0.244	0.245	0.086	0 °C to +50 °C
	0.135	0.128	0.084	+15 °C to +35 °C
+33	0.110	0.102	0.083	+20 °C to +25 °C
+25	0.230	0.040	0.245	0 °C to +50 °C
	0.112	0.034	0.128	+15 °C to +35 °C
+13	0.079	0.033	0.102	+20 °C to +25 °C
+5	0.024	0.230	0.244	0 °C to +50 °C
	0.022	0.112	0.135	+15 °C to +35 °C
-42	0.022	0.079	0.110	+20 °C to +25 °C
-4	2 +5	5/+13 +25	5/+33 +4	5
	Powe	er level in dBm	l	

Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z22/-Z23/-Z24 universal power sensors

Sensor type		three-path diode power sensor;
		R&S®NRP-Z22/-Z23/-Z24 with preceding RF
		power attenuator
Measurand		power of incident wave
		power of source (DUT) into 50 Ω ¹³
RF connector	R&S [®] NRP-Z11/-Z21/-Z22/-Z23/-Z24	N (male)
	R&S [®] NRP-Z31	3.5 mm (male)
RF attenuation 14	R&S [®] NRP-Z11/-Z21/-Z31	not applicable
	R&S®NRP-Z22	10 dB
	R&S [®] NRP-Z23	20 dB
	R&S [®] NRP-Z24	25 dB
Measurement functions	stationary and recurring waveforms	Continuous Average
		Burst Average
		Timeslot/Gate Average
		Trace
	single events	Trace
Continuous Average function	measurand	mean power over recurring acquisition interval
	aperture	10 μs to 300 ms (20 ms default)
	window function	uniform or von Hann 15
	duty cycle correction 16	0.001 % to 99.999 %
	capacity of measurement buffer 17	1 to 1024 results
Burst Average function	measurand	mean power over burst portion of recurring signa
•		(trigger settings required)
	detectable burst width	20 µs to 50 ms
	minimum gap between bursts	10 µs
	dropout period ¹⁸ for burst end	0 to 3 ms
	detection	
	exclusion periods 19	I .
	start	0 to burst width
	end	0 s to 3 ms
	resolution (dropout and exclusion	sample period (≈ 8 µs)
	periods)	
Timeslot/Gate Average function	measurand	mean power over individual timeslots/gates of recurring signal
	number of timeslots/gates	1 to 128 (consecutive)
	nominal length	10 μs to 0.1 s
	start of first timeslot/gate	at delayed trigger event
	exclusion periods 19	at dolayed trigger event
	start	0 to nominal length
	end	0 s to 3 ms
	resolution (nominal length and	sample period (≈ 8 µs)
	exclusion periods)	
Trace function	measurand	mean power over pixel length
Trace randion	acquisition	moun power ever pixer length
	length (Δ)	100 µs to 300 ms
	start (referenced to delayed trigger)	–5 ms to 100 s
	result	J 10 100 0
	pixels (M)	1 to 1024
	resolution (Δ/M)	1 10 1027
	non-recurring or internally	≥ 10 µs
	triggered	•
	recurring and externally triggered	≥ 2.5 µs

Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z22/-Z23/-Z24 universal power sensors (continued)


•	,				
Averaging filter	modes AUTO OFF (fixed averaging number)				
		AUTO ON (continuously auto-adapted)			
		AUTO ONCE (automatica	lly fixed once)		
	AUTO OFF				
	supported measurement functions	all			
	averaging number	2^{N} ; $N = 0$ to 16 (13 for Tra	ace function)		
	AUTO ON/ONCE				
	supported measurement functions	Continuous Average, Burst Average, Timeslot/Gate Average			
	Normal operating mode	averaging number adapte and power to be measure	•		
	Fixed Noise operating mode	averaging number adapte content			
	result output				
	Moving mode	continuous, independent of	of averaging number		
	rate	can be limited to 0.1 s ⁻¹			
	Repeat mode	only final result			
Attenuation correction	function	corrects the measuremen	t result by means of a		
	range	fixed factor (dB offset) -200.000 dB to +200.000	dB		
Embedding ²⁰	function	incorporates a two-port de			
Embedding	TUTICION	input so that the measure the input of this device			
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device			
	frequencies	1 to 1000			
Gamma correction	function	removes the influence of i	mpedance mismatch		
		from the measurement result so that the power of the source (DUT) into 50 Ω can be read			
	parameters	magnitude and phase of reflection coefficier source (DUT)			
Frequency response correction	function	takes the frequency response of the sensor section and of the RF power attenuator into			
		account (if applicable)			
	parameter	center frequency of test signal			
	residual uncertainty	see specification of calibration uncertainty and uncertainty for absolute and relative power measurements			
Measurement times 21	Continuous Average	2 × (aperture + 105 μs) ×	$2^N + t$		
measurement times	buffered ¹⁷ , without averaging				
2 ^N : averaging number	Timeslot/Gate Average	2 × (aperture + 250 μs) ×			
T: set number of timeslots	signal period – $T \times w > 100 \mu s$	$\leq 2 \times \text{signal period} \times (2^N + \frac{1}{2}) + t_z$			
w: nominal length of timeslot	all other cases	\leq 4 × signal period × (2 ^N + t_z : < 1.6 ms (0.9 ms, typic			
Zeroing (duration)	depends on setting of averaging filter		,		
,	AUTO ON	4 s			
	AUTO OFF, integration time ²²				
	< 4 s	4 s			
	4 s to 16 s	integration time			
	> 16 s	16 s			
Measurement error due to	R&S®NRP-Z11/-Z2x: all paths				
harmonics ²³	R&S®NRP-Z31: paths 1 and 2	n=2 $n=3$	-		
	-30 dBc	< 0.001 dB < 0.003 dB			
	-20 dBc	< 0.002 dB < 0.010 dB	n: multiple		
	-10 dBc	< 0.010 dB < 0.040 dB	of carrier frequency		
	R&S®NRP-Z31: path 3	n=2 $n=3$			
	-40 dBc	< 0.001 dB < 0.010 dB	-		
	-30 dBc	< 0.002 dB < 0.040 dB	-		
Management sures de 1	-20 dBc	< 0.010 dB < 0.100 dB	The analysis of the second		
Measurement error due to modulation ²⁴	general	depends on CCDF and Ri signal	r pandwidth of test		
	WCDMA (3GPP test model 1-64)				
	worst case	-0.02 dB to +0.07 dB			
	typical	-0.01 dB to +0.03 dB			

Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z22/-Z23/-Z24 universal power sensors (continued)

Change of input reflection co-	10 MHz to 2.4 GHz	< 0.02 (0.01)	()45 00 :-	. 25 20		
efficient with respect to power 25	> 2.4 GHz	< 0.03 (0.02)	(): +15 °C to	1+35 °C		
Calibration uncertainty ²⁶	R&S [®] NRP-Z11/-Z21	path 1	path 2	path 3		
	10 MHz to < 100 MHz	0.056 dB	0.047 dB	0.048 dB		
	100 MHz to 4.0 GHz	0.066 dB	0.057 dB	0.057 dB		
	> 4.0 GHz to 8.0 GHz	0.083 dB	0.071 dB	0.072 dB		
	> 8.0 GHz to 12.4 GHz	0.094 dB	0.076 dB	0.076 dB		
	> 12.4 GHz to 18.0 GHz	0.123 dB	0.099 dB	0.099 dB		
	R&S [®] NRP-Z31	path 1	path 2	path 3		
	10 MHz to < 100 MHz	0.051 dB	0.053 dB	0.053 dB		
	100 MHz to 4.0 GHz	0.061 dB	0.062 dB	0.062 dB		
	> 4.0 GHz to 8.0 GHz	0.063 dB	0.063 dB	0.063 dB		
	> 8.0 GHz to 12.4 GHz	0.070 dB	0.069 dB	0.069 dB		
	> 12.4 GHz to 18.0 GHz	0.088 dB	0.087 dB	0.087 dB		
	> 18.0 GHz to 26.5 GHz	0.088 dB	0.085 dB	0.087 dB		
	> 26.5 GHz to 33.0 GHz	0.116 dB	0.113 dB	0.117 dB		
	R&S [®] NRP-Z22/-Z23/-Z24 ²⁷	path 1	path 2	path 3		
	10 MHz to < 100 MHz	0.078 dB	0.072 dB	0.073 dB		
	100 MHz to 4.0 GHz	0.084 dB	0.077 dB	0.077 dB		
	> 4.0 GHz to 12.4 GHz	0.110 dB	0.095 dB	0.095 dB		
	> 12.4 GHz to 18.0 GHz	0.139 dB	0.118 dB	0.118 dB		
nterface to host	power supply	+5 V/0.2 A (USB high-power device)				
	remote control	as a USB device (function) in full-speed mode				
		compatible with USB 1.0/1.1/2.0 specification		•		
	trigger input	differential (0 V/+3.3 V)				
	connector type	ODU Mini-Snap® L series,				
		six-pole cylindri	six-pole cylindrical straight plug			
	permissible cable length	≤ 10 m (see tables on page 52)				
	(including R&S®NRP-Z2 extension	_ · · · · · · (· · · · · · · · · · · ·				
	cable and R&S®NRP-Z3/-Z4 USB					
	adapter, if applicable)					
Dimensions (W × H × L)	R&S [®] NRP-Z11/-Z21/-Z31	48 mm × 31 mr	n × 170 mm			
•		(1.89 in × 1.22	in × 6.69 in)			
	R&S [®] NRP-Z22	48 mm × 31 mr	n × 214 mm			
		(1.89 in × 1.22	in × 8.42 in)			
	R&S [®] NRP-Z23	60 mm × 54 mr	60 mm × 54 mm × 285 mm			
		(2.36 in × 2.13	in × 11.22 in)			
	R&S [®] NRP-Z24	60 mm × 54 mr	60 mm × 54 mm × 344 mm			
		(2.36 in × 2.13	in × 13.54 in)			
	length including connecting cable	approx. 1.6 m (62.99 in)				
N eight	R&S [®] NRP-Z11/-Z21/-Z31	< 0.30 kg (0.66				
_	R&S [®] NRP-Z22	< 0.37 kg (0.82				
	R&S [®] NRP-Z23		< 0.48 kg (1.06 lb)			
	R&S [®] NRP-Z24	< 0.63 kg 1.39 lb)				

Power rating of the R&S®NRP-Z22/-Z23/-Z24

Hatched area: The maximum surface temperatures permitted by IEC 1010-1 are exceeded. Provide protection against inadvertent contacting or apply only a short-term load to the power sensor.

Wideband power sensors in R&S[®]Smart Sensor Technology™

R&S®NRP-Z81 wideband power sensor

	-			
Frequency range	R&S [®] NRP-Z81	50 MHz to 18 GHz		
Impedance matching (SWR)	50 MHz to 2.4 GHz	< 1.16 (1.11)		
pouuou.og (o)	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)	-	
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)	(): +15 °C to +35 °C	
	2 0.0 GHZ to 10.0 GHZ	(1.20)	(). 110 0 to 100 0	
Power measurement range	Continuous Average	1 nW to 100 mW (-60 dBr	n to +20 dBm)	
	Burst			
	full video bandwidth	20 μW to 100 mW (–17 dE		
	300 kHz	4 μW to 100 mW (-24 dBr		
	Trace, Timeslot/Gate	20 nW to 100 mW (-47 dB		
	Statistics	4 μW ²⁸ to 100 mW (–24 d		
Max. power	average power	0.2 W (+23 dBm), continuo		
	peak envelope power	1.0 W (+30 dBm) for max.	1 µs	
Dynamic response	video bandwidth	≥ 30 MHz ²⁹		
	single-shot bandwidth	≥ 30 MHz ²⁹		
	video bandwidth setting	full (≥ 30 MHz), 5 MHz, 1.5	5 MHz, 300 kHz	
	rise time 10 %/90 %			
	full video bandwidth			
		< 40 ns ²⁹ (f < 500 MHz)		
	5 MHz	< 75 ns		
	1.5 MHz	< 250 ns		
	300 kHz	< 1.2 µs		
	detectable burst width	≥ 50 ns ²⁹ (f ≥ 500 MHz, full video bandwidth)		
	overshoot	≤ 5 %	,	
Acquisition	sample rate [period]			
•	full video bandwidth $80 \times 10^6 \text{ s}^{-1} \text{ [12.5 ns]}$			
	5 MHz	$40 \times 10^6 \mathrm{s}^{-1} [25.0 \mathrm{ns}]$		
	1.5 MHz	$10 \times 10^6 \mathrm{s}^{-1} [100 \mathrm{ns}]$		
	300 kHz	$2.5 \times 10^6 \text{s}^{-1} [400 \text{ns}]$		
	capture length	50 ns to 1 s (depending on meas. function)		
	time base accuracy	±50 ppm	,	
	time base jitter	< 1 ns		
Triggering	internal			
959	threshold level range	-30 dBm to +20 dBm (usa	ble from	
	ge	–22 dBm with full video ba		
	threshold level accuracy	identical to uncertainty for		
	amountaine for accentacy	measurements	aboolato porro.	
	threshold level hysteresis	0 dB to 10 dB		
	dropout ⁵	0 s to 10 s		
	external			
	external	R&S®NRP-Z3 USB adapte	or.	
	slone (external internal)	pos./neg.	51	
	slope (external, internal)	1 0		
	delay	-51.2 μs to +10 s		
	hold-off	0 s to 10 s		
	resolution (delay, hold-off, dropout)	sample period	sta hora hald	
	source	internal, external, immediate, bus, hold		

R&S®NRP-Z81 wideband power sensor (continued)

Zero offset		R&S [®] NRP-Z81			
After external zeroing 30	Continuous Average				
_	10 µs aperture time	< 400 (220) pW			
	other durations	< 5.0 (2.0) nW			
	Burst/Timeslot/Gate Average, Trace				
(): typical at 1 GHz	with averaging	< 10.0 (2.0) nW			
	without averaging	< 200 (100) nW			
	Statistics	< 200 (100) nW			
Zero drift ^{8 30}		R&S [®] NRP-Z81			
	Continuous Average				
	10 µs aperture time	< 200 pW			
	other durations	< 500 pW			
	Burst/Timeslot/Gate Average, Trace	(pixel mean)			
	with averaging	< 2.0 nW			
	without averaging	< 150 nW			
	Statistics	< 150 nW			
Measurement noise 30 31		R&S [®] NRP-Z81			
	Continuous Average ³²	< 200 (110) pW			
	Trace/Statistics (noise per sample)				
	full video bandwidth	< 3.0 (2.0) μW			
(): typical at 1 GHz	5 MHz	< 1.5 (1.0) μW			
	1.5 MHz	< 0.9 (0.6) µW			
	300 kHz	< 0.6 (0.4) µW			
	Burst/Timeslot/Gate Average	Multiply the noise-per-sample specification for			
	Trace (pixel mean)	full video bandwidth with noise reduction factors			
	,	from tables B and C. For gate (pixel) lengths			
		≥ 2 µs, a noise value of 5 nW or better can be			
		achieved with adequate averaging.			
Uncertainty for absolute power		R&S®NRP-Z81			
measurements 33	50 MHz to < 100 MHz	0.15 dB (3.5 %)			
0 °C to +50 °C	100 MHz to 8.0 GHz	0.13 dB (3.0 %)			
	> 8.0 GHz to 18.0 GHz	0.15 dB (3.5 %)			

Table A Multipliers for zero offset, zero drift and noise specifications

Use these multipliers to calculate zero offset, zero drift and noise when operating the sensor at power levels above -20 dBm, at frequencies below 500 MHz, or at temperatures other than +23 °C.

Power	≤ –20 dBm	-10 dBm	–5 dBm	0 dBm	5 dBm	10 dBm	15 dBm	20 dBm
Temperature								
0 °C	0.8 [0.9]	0.9 [1.0]	1.4 [1.5]	3.2 [3.5]	7.5 [8.5]	17 [18]	35 [37]	65 [70]
+15 °C	0.9 [1.0]	1.1 [1.2]	1.6 [1.8]	3.4 [3.6]	7.5 [8.5]			
+23 °C	1.0 [1.2]	1.3 [1.5]	1.8 [2.0]	3.5 [3.8]	7.6 [8.7]			
+35 °C	1.4 [1.7]	1.7 [2.1]	2.3 [2.6]	3.9 [4.3]	7.8 [9.0]			
+50 °C	2.5 [3.0]	2.7 [3.3]	3.3 [4.0]	5.2 [5.4]	8.7 [9.5]			

[] At frequencies < 500 MHz.

R&S®NRP-Z81 wideband power sensor (continued)

Table B Noise reduction factors for gating and smoothing

The noise reduction factors in this table describe how measurement noise is reduced if the mean value of adjacent samples is taken over a time interval. The time interval can be the length of a gate, timeslot, or pixel in trace mode. Without averaging or for single events, use the leftmost column. If averaging is activated, use the columns for the individual repetition rates and additionally apply multipliers from table C. The repetition rate is identical to the frequency of the measurement being carried out, i.e. the inverse of the trigger period.

Repetition rate Gate (pixel) length	0	10 s ⁻¹	100 s ⁻¹	10 ³ s ⁻¹	10 ⁴ s ⁻¹	5×10 ⁴ s ⁻¹	10 ⁵ s ⁻¹
25 ns				0.7			
50 ns				0.5			
100 ns				0.4			
200 ns				0.3			
500 ns				0.2			
1 µs	0.16	0.	15		0.	14	
2 µs	0.14	0.13	0.12	0.11		0.10	
10 µs	0.11	0.1	0.09	0.08	0.07	0.06	
100 µs	0.10	0.09	0.07	0.06	0.04		•
1 ms	0.10	0.07	0.06	0.035		-	
10 ms	0.10	0.06	0.035		-		

Table C Noise reduction factors for averaging

Averaging number	2	4	8	16	32	64	128	256	512	1k	2k	4k	8k
Reduction factor	0.7	0.5	0.35	0.25	0.18	0.13	0.09	0.063	0.044	0.031	0.022	0.016	0.011

Example: A power measurement on a radar pulse is carried out by means of the Timeslot/Gate function. The gate length is set to 1 μ s, and the averaging number to 32. The pulse repetition rate is 100 Hz, and the measurement is performed at +15 °C ambient temperature. The pulse power is about –10 dBm.

From the specifications, a 2σ noise-per-sample value of 2 μ W (typical) can be derived for reference conditions. Applying a multiplier of 1.1 from table A for +15 °C ambient temperature and -10 dBm pulse power results in 2.2 μ W sampling noise under measurement conditions. Gating reduces noise by a factor of 0.15 (table B), and averaging further reduces noise by a factor of 0.18 (table C). The residual 2σ noise of mean power within the gate can then be calculated as follows: 2.2 μ W \times 0.15 \times 0.18 = 59 nW (0.06 % of measured value).

Additional characteristics of the R&S®NRP-Z81 wideband power sensor

Sensor type		wideband diode power sensor
Measurand		power of incident wave
incasarana		power of modern wave power of source (DUT) into 50 Ω^{13}
RF connector	R&S [®] NRP-Z81	N (male)
THE COMMISSION	NGC NICE 201	TV (maio)
Measurement functions	stationary and recurring waveforms	Continuous Average
	commence of the commence of th	Burst
		Timeslot/Gate
		Trace, Statistics
	single events	Trace, Statistics
Continuous Average function	measurand	mean power over recurring acquisition interval
	aperture	1 µs to 1 s (10 µs default)
	window function	uniform or von Hann 15
	duty cycle correction ¹⁶	0.001 % to 99.999 %
	capacity of measurement buffer ¹⁷	1 to 8192 results
Burst Average function	measurand	mean power over burst portion of recurring signa
burst Average ranotion	measurana	(trigger settings required)
	detectable burst width	50 ns to 0.1 s
	minimum gap between bursts	40 ns
	dropout period ¹⁸ for burst end	0 s to 0.1 s
	detection	0 3 10 0.1 3
	exclusion periods ¹⁹	
	start	0 to burst width
	end	0 s to 51.2 µs
	resolution	
		sample period
Time and at 10 at a from at i am	(dropout and exclusion periods)	
Timeslot/Gate function	measurand	mean, maximum and minimum power over
	number of time solute/solutes	individual timeslots/gates of recurring signal
	number of timeslots/gates	1 to 16 (consecutive)
	nominal length	50 ns to 0.1 s
	start of first timeslot/gate exclusion periods 19	at delayed trigger event
		O to a principal langeth
	start	0 to nominal length
	fence	0 s to 0.1 s (anywhere within timeslot)
	end	0 s to 51.2 μs
	resolution	12.5 ns
T 6 41	(nominal length and exclusion periods)	
Trace function	measurand	mean, random, maximum and minimum power
		over pixel length
	acquisition	50 as to 4 s
	length (4)	50 ns to 1 s
	start (referenced to delayed trigger)	–4096 × <u>⊿</u> / <i>M</i> to +10 s
	result	0.1- 0.100
	pixels (M)	3 to 8192
	resolution (Δ/M)	
	normal	≥ sample period
	equivalent time	≥ 100 ps
Statistics functions	measurand	CCDF or PDF over accumulated records
	acquisition	
	mode	recurring or triggered
	length (aperture)	10 μs to 0.3 s
	start (referenced to delayed trigger)	0 s to +10 s
	exclusion period (fence)	0 s to 0.3 s (anywhere within aperture)
	number of accumulated records	2^N ; $N = 0$ to 16 (set by averaging number)
	result	
	number of histogram classes (C)	3 to 8192
	power span (S)	0.01 dB to 100 dB
	minimum class width (S/C)	0.006 dB

Additional characteristics of the R&S®NRP-Z81 wideband power sensor (continued)

Averaging filter	modes	AUTO OFF (fixed exercises number)		
Averaging filter	modes	AUTO OFF (fixed averaging number) AUTO ON (continuously auto-adapted)		
		AUTO ONCE (automatically fixed once)		
	AUTO OFF	AOTO ONCE (automatically lixed once)		
	supported measurement functions	all		
	averaging number	2^N ; $N = 0$ to 20 (16 for Trace/Statistics)		
	AUTO ON/ONCE			
	supported measurement functions	Continuous Average, Burst Average, Timeslot/Gate Average		
	Normal operating mode	averaging number adapted to resolution setting and power to be measured		
	Fixed Noise operating mode	averaging number adapted to specified noise content		
	result output	content		
	Moving mode	continuous, independent of averaging number		
	rate	can be limited to 0.1 s ⁻¹		
	Repeat mode	only final result		
Attenuation correction	function	corrects the measurement result by means of a		
		fixed factor (dB offset)		
	range	-200.000 dB to +200.000 dB		
Embedding	function	incorporates a two-port device at the sensor input so that the measurement plane is shifted to the input of this device		
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device		
	number of devices	user-definable		
	frequencies (sum of all devices)	≤ 32000		
Gamma correction	function	removes the influence of impedance mismatch		
		from the measurement result so that the power of the source (DUT) into 50 Ω can be read		
	parameters	magnitude and phase of reflection coefficient of		
	parameters	source (DUT)		
Frequency response correction	function	takes the frequency response of the power		
requestoy response contestion	Tariotion	sensor into account		
	parameter	center frequency of test signal		
	residual uncertainty	see specification of calibration uncertainty and		
	residual ansertainty	uncertainty for absolute power measurements		
Measurement times ²¹	Continuous Average	$2 \times (aperture + 6.5 \ \mu s) \times 2^N + t_z$		
Weastrement times	buffered ¹⁷ , without averaging	$2 \times (aperture + 50 \mu s) \times buffer size + t_z$		
2 ^N : averaging number		t_z : 1.6 ms (typical)		
T: number of timeslots	Timeslot/Gate Average	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
w: nominal length of timeslot	signal period – $T \times w > 6 \mu s$	$\leq 2 \times \text{signal period} \times (2^N + \frac{1}{2}) + t_t$		
	all other cases	$\leq 4 \times \text{signal period} \times (2^N + \frac{1}{4}) + t_t$		
		t _t : 3 ms (typical)		
Zeroing (duration)	including all functions, entire	8 s		
	frequency range			
	restricted to < 500 MHz, all functions	4 s		
	restricted to ≥ 500 MHz, all functions	4 s		
	restricted to Trace and Statistics	20 ms		
	function, entire frequency range	1.4.011		
Measurement error due to	n=3	≤ 4 GHz 4 GHz to 12.4 GHz > 12.4 GHz		
harmonics ³⁴	-60 dBc	< 0.004 dB < 0.003 dB < 0.003 dB		
and the land of an art of the second	-40 dBc	< 0.035 dB < 0.030 dB < 0.025 dB		
n: multiple of carrier frequency	-20 dBc	< 0.350 dB < 0.300 dB < 0.250 dB		
	n = 2	≤ 4 GHz 4 GHz to 8 GHz > 8 GHz		
	-60 dBc	< 0.001 dB < 0.002 dB < 0.003 dB		
	-40 dBc	< 0.010 dB < 0.017 dB < 0.025 dB		
	–20 dBc	< 0.100 dB < 0.170 dB < 0.250 dB		
Change of input reflection	-10 dBm to -60 dBm	< 0.035 (0.010)		
coefficient with respect to power	-10 dBm to 0 dBm	< 0.035 (0.025) (): +15 °C to +50 °C		
	-10 dBm to +10 dBm	$< 0.075 (0.055)$ and $f \le 4 \text{ GHz}$		
	-10 dBm to +20 dBm	< 0.090 (0.080)		

Additional characteristics of the R&S®NRP-Z81 wideband power sensor (continued)

Calibration uncertainty 35		R&S [®] NRP-Z81		
	50 MHz to < 100 MHz	0.075 dB (1.8 %)		
	≥ 100 MHz to 2.4 GHz	0.055 dB (1.3 %)		
	> 2.4 GHz to 4.0 GHz	0.065 dB (1.5 %)		
	> 4.0 GHz to 8.0 GHz	0.075 dB (1.8 %)		
	> 8.0 GHz to 12.5 GHz	0.090 dB (2.1 %)		
	> 12.5 GHz to 18.0 GHz	0.110 dB (2.6 %)		
Interface to host	power supply	+5 V/0.5 A (USB high-power device)		
	remote control	as a USB device (function) in full-speed mode,		
		compatible with USB 1.0/1.1/2.0 specification		
	trigger input	differential (0 V/+3.3 V)		
	connector type	ODU Mini-Snap [®] L series,		
		six-pole cylindrical straight plug		
	permissible cable length	≤ 5 m (see tables on page 52)		
	(including R&S®NRP-Z2 extension			
	cable and R&S®NRP-Z3/-Z4 USB			
	adapter, if applicable)			
Dimensions	$W \times H \times L$	48 mm × 31 mm × 170 mm		
		(1.89 in × 1.22 in × 6.69 in)		
	length including connecting cable	approx. 1.6 m (62.99 in)		
Weight		< 0.30 kg (0.66 lb)		

Thermal power sensors in R&S[®]Smart Sensor Technology™

R&S®NRP-Z51/-Z55 thermal power sensors

Specifications from 18 GHz to 40 GHz apply only to the R&S[®]NRP-Z55.

Frequency range	R&S [®] NRP-Z51	DC to 18 GHz	<u></u>				
- -	R&S [®] NRP-Z55	DC to 40 GHz	Z				
Impedance matching (SWR)	DC to 2.4 GHz	< 1.10	< 1.10				
	> 2.4 GHz to 12.4 GHz	< 1.15	< 1.15				
	> 12.4 GHz to 18.0 GHz	< 1.20					
	> 18.0 GHz to 26.5 GHz	< 1.25					
	> 26.5 GHz to 40.0 GHz	< 1.30					
Power measurement range	Continuous Average	1 μW to 100 r	mW (-30 dBm to -	+20 dBm),			
			n a single range				
Max. power	average power		Bm), continuous				
	peak envelope power		n) for max. 1 µs				
Acquisition	sample rate	20.833 kHz (s					
Zero offset	after external zeroing 6 7	< 50 nW (33 ı	nW, typical)				
Zero drift ⁸		< 20 nW					
Measurement noise 9		< 30 nW (20 i					
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to			
measurements 36		+25 °C	+35 °C	+50 °C			
	R&S®NRP-Z51						
	DC to < 10 MHz	0.100 dB	0.103 dB	0.114 dB			
	10 MHz to < 100 MHz	0.052 dB	0.057 dB	0.075 dB			
	100 MHz to 4.0 GHz	0.061 dB	0.066 dB	0.082 dB			
	> 4.0 GHz to 8.0 GHz	0.074 dB	0.078 dB	0.092 dB			
	> 8.0 GHz to 12.4 GHz	0.078 dB	0.082 dB	0.095 dB			
	> 12.4 GHz to 18.0 GHz	0.100 dB	0.102 dB	0.113 dB			
	R&S [®] NRP-Z55						
	DC to < 10 MHz	0.100 dB	0.103 dB	0.114 dB			
	10 MHz to < 100 MHz	0.057 dB	0.062 dB	0.079 dB			
	100 MHz to 4.0 GHz	0.068 dB	0.072 dB	0.087 dB			
	> 4.0 GHz to 8.0 GHz	0.080 dB	0.083 dB	0.096 dB			
	> 8.0 GHz to 12.4 GHz	0.084 dB	0.087 dB	0.100 dB			
	> 12.4 GHz to 18.0 GHz	0.106 dB	0.108 dB	0.119 dB			
	> 18.0 GHz to 26.5 GHz	0.092 dB	0.095 dB	0.106 dB			
	> 26.5 GHz to 30.0 GHz	0.102 dB	0.104 dB	0.115 dB			
	> 30.0 GHz to 35.0 GHz	0.114 dB	0.116 dB	0.126 dB			
	> 35.0 GHz to 40.0 GHz	0.108 dB	0.110 dB	0.120 dB			
Uncertainty for relative power		0.032 dB					
measurements 37							

Additional characteristics of the R&S®NRP-Z51/-Z55 thermal power sensors

Sensor type		thermoelectric power sensor
Measurand		power of incident wave
ivieasurariu		power of incident wave power of source (DUT) into 50 Ω ¹³
DF	R&S [®] NRP-Z51	
RF connector		N (male)
	R&S®NRP-Z55	2.92 mm (male)
Measurement function	stationary and recurring waveforms	Continuous Average
Continuous Average function	measurand	mean power over recurring acquisition interval
	aperture	1 ms to 300 ms (20 ms default)
	window function	uniform or von Hann 15
	duty cycle correction 16	0.001 % to 99.999 %
	capacity of measurement buffer 17	1 to 1024 results
Averaging filter	modes	AUTO OFF (fixed averaging number)
		AUTO ON (continuously auto-adapted)
		AUTO ONCE (automatically fixed once)
	AUTO OFF	
	averaging number	2^{N} ; $N = 0$ to 16
	AUTO ON/ONCE	2 ,74 = 0 10 10
	Normal operating mode	averaging number adapted to resolution setting
		and power to be measured
	Fixed Noise operating mode	averaging number adapted to specified noise content
	result output	
	Moving mode	continuous, independent of averaging number
	rate	can be limited to 0.1 s ⁻¹
	Repeat mode	only final result
Attenuation correction	function	corrects the measurement result by means of a
	14.15.15.1	fixed factor (dB offset)
	range	-200.000 dB to +200.000 dB
Embedding	function	incorporates a two-port device at the sensor input
Embedding	TUTICUOTI	so that the measurement plane is shifted to the
		·
		input of this device
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device
	frequencies	1 to 1000
Gamma correction	function	removes the influence of impedance mismatch
		from the measurement result so that the power of
		the source (DUT) into 50 Ω can be read
	parameters	magnitude and phase of reflection coefficient of
		source (DUT)
Frequency response correction	function	takes the frequency response of the power
		sensor into account
		Note: Firmware version 4.22 or later is required
		to set the frequency of the power sensor to
		values below 10 MHz.
		Otherwise, set the frequency to 10 MHz to be
		compliant with specifications for absolute
		accuracy at signal frequencies below 10 MHz.
	parameter	center frequency of test signal
	residual uncertainty	see specification of calibration uncertainty and
	. secada: directianity	uncertainty for absolute power measurements
Measurement time ²¹		$2 \times (aperture + 450 \mu s) \times 2^N + 4 ms + t_d$
2 ^N : averaging number		t_d (80 ms) must be taken into account when auto
L . averaging number		$t_{\rm d}$ (80 ms) must be taken into account when auto delay 43 is active
Zoroing (duration)	depends on softing of every sing file-	uciay is active
Zeroing (duration)	depends on setting of averaging filter	4.0
	AUTO ON	4 s
	AUTO OFF, integration time ²²	
	< 4 s	4 s
	4 s to 16 s	integration time
	> 16 s	16 s
Change of input reflection co- efficient with respect to power	only for power levels > 15 dBm	< 0.03

Additional characteristics of the R&S®NRP-Z51/-Z55 thermal power sensors (continued)

Calibration uncertainty 38		R&S [®] NRP-Z51	R&S [®] NRP-Z55		
	10 MHz to < 100 MHz	0.047 dB	0.053 dB		
	100 MHz to 4.0 GHz	0.057 dB	0.065 dB		
	> 4.0 GHz to 8.0 GHz	0.071 dB	0.077 dB		
	> 8.0 GHz to 12.4 GHz	0.076 dB	0.084 dB		
	> 12.4 GHz to 18.0 GHz	0.098 dB	0.104 dB		
	> 18.0 GHz to 26.5 GHz		0.086 dB		
	> 26.5 GHz to 30.0 GHz		0.100 dB		
	> 30.0 GHz to 35.0 GHz		0.112 dB		
	> 35.0 GHz to 40.0 GHz		0.105 dB		
Temperature effect 39		< 0.004 dB/K			
Linearity 40		0.020 dB			
Interface to host	power supply	+5 V/0.1 A (USB low-power device)			
	remote control	as a USB device (function) in full-speed mode,			
		compatible with USB 1.0/1.1/2.0 specifications			
	trigger input	differential (0 V/+3.3 \	differential (0 V/+3.3 V)		
	connector type	ODU Mini-Snap® L se	ries,		
		six-pole cylindrical str	aight plug		
	permissible cable length	≤ 10 m (see tables on	page 52)		
	(including R&S®NRP-Z2 extension				
	cable and R&S®NRP-Z3/-Z4 USB				
	adapter, if applicable)				
Dimensions	$W \times H \times L$	48 mm × 31 mm × 17	* ******		
		$(1.89 \text{ in} \times 1.22 \text{ in} \times 6.$	69 in)		
	length including connecting cable	approx. 1.6 m (62.99	in)		
Weight		< 0.30 kg (0.66 lb)			

R&S®NRP-Z56/-Z57 thermal power sensors

Specifications from 50 GHz to 67 GHz apply only to the R&S[®]NRP-Z57.

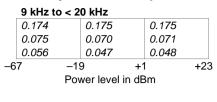
Frequency range	R&S [®] NRP-Z56	DC to 50 GHz	DC to 50 GHz			
	R&S [®] NRP-Z57	DC to 67 GHz	DC to 67 GHz			
Impedance matching (SWR)	DC to 100 MHz	< 1.03	< 1.03			
	> 100 MHz to 2.4 GHz	< 1.06	< 1.06			
	> 2.4 GHz to 12.4 GHz	< 1.13				
	> 12.4 GHz to 18.0 GHz	< 1.16				
	> 18.0 GHz to 26.5 GHz	< 1.22				
	> 26.5 GHz to 40.0 GHz	< 1.28				
	> 40.0 GHz to 50.0 GHz	< 1.30				
	> 50.0 GHz to 67.0 GHz	< 1.35				
Power measurement range		300 nW to 10	0 mW (-35 dBm t	to +20 dBm),		
		continuous, ir	n a single range			
Max. power	average power	0.3 W (+25 dl	0.3 W (+25 dBm), continuous			
	peak envelope power	10 W (40 dBr	10 W (40 dBm) for max. 1 μs			
Acquisition	sample rate	20.833 kHz (s	sigma-delta)			
Zero offset	after external zeroing ⁶	< 25 nW (typi	cally 15 nW at 1	GHz)		
Zero drift ⁸		< 8 nW				
Measurement noise 9		< 25 nW (typi	cally 15 nW at 1	GHz)		
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to		
measurements 41		+25 °C	+35 °C	+50 °C		
	DC to 100 MHz	0.040 dB	0.046 dB	0.067 dB		
	> 100 MHz to 8.0 GHz	0.054 dB	0.059 dB	0.079 dB		
	> 8.0 GHz to 12.4 GHz	0.063 dB	0.068 dB	0.085 dB		
	> 12.4 GHz to 26.5 GHz	0.086 dB	0.091 dB	0.112 dB		
	> 26.5 GHz to 40.0 GHz	0.104 dB	0.111 dB	0.138 dB		
	> 40.0 GHz to 50.0 GHz	0.142 dB	0.148 dB	0.173 dB		
	> 50.0 GHz to 59.0 GHz	0.206 dB	0.213 dB	0.238 dB		
	> 59.0 GHz to 67.0 GHz	0.248 dB	0.253 dB	0.275 dB		
Uncertainty for relative power measurements ⁴²		0.010 dB				

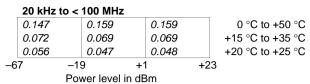
Additional characteristics of the R&S®NRP-Z56/-Z57 thermal power sensors

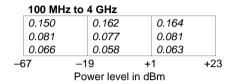
Sensor type		thermoelectric power sensor			
Measurand		power of incident wave			
		power of source (DUT) into 50 Ω^{13}			
RF connector	R&S [®] NRP-Z56	2.40 mm (male)			
	R&S [®] NRP-Z57	1.85 mm (male)			
Measurement function	stationary and recurring waveforms	Continuous Average			
Continuous Average function	measurand	mean power over recurring acquisition interval			
Sommadad / Worago Tarronom	aperture	1 ms to 300 ms (5 ms default)			
	window function	uniform or von Hann 15			
	duty cycle correction ¹⁶	0.001 % to 99.999 %			
	capacity of measurement buffer ¹⁷	1 to 1024 results			
Averaging filter	modes	AUTO OFF (fixed averaging number)			
Averaging inter	modes	AUTO ON (continuously auto-adapted)			
		AUTO ONCE (automatically fixed once)			
	AUTO OFF	AOTO ONCE (automatically lixed once)			
	averaging number	2^N ; $N = 0$ to 16			
	AUTO ON/ONCE	2 , N = 0 10 10			
		avaraging number adented to recolution action			
	Normal operating mode	averaging number adapted to resolution setting			
	First Maine and Comments	and power to be measured			
	Fixed Noise operating mode	averaging number adapted to specified noise content			
	result output				
	Moving mode	continuous, independent of averaging number			
	rate	can be limited to 0.1 s ⁻¹			
	Repeat mode	only final result			
Attenuation correction	function	corrects the measurement result by means of a			
		fixed factor (dB offset)			
	range	-200.000 dB to +200.000 dB			
Embedding	function	incorporates a two-port device at the sensor inpu			
•		so that the measurement plane is shifted to the			
		input of this device			
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device			
	frequencies	1 to 1000			
Gamma correction	function	removes the influence of impedance mismatch			
		from the measurement result so that the power o			
		the source (DUT) into 50 Ω can be read			
	parameters	magnitude and phase of reflection coefficient of			
	'	source (DUT)			
Frequency response correction	function	takes the frequency response of the power			
. , .		sensor into account			
	parameter	center frequency of test signal			
	residual uncertainty	see specification of calibration uncertainty and			
	,	uncertainty for absolute and relative power			
		measurements			
Measurement time ²¹		$2 \times (aperture + 450 \ \mu s) \times 2^{N} + 4 \ ms + t_{d}$			
2 ^N : averaging number		$t_{\rm d}$ (40 ms) must be taken into account when auto			
		delay ⁴³ is active			
Zeroing (duration)		10 s			
Change of input reflection co-	only for power levels > 15 dBm	< 0.005			
efficient with respect to power	5, .5. ponor lovolo - 10 abili	- 0.000			

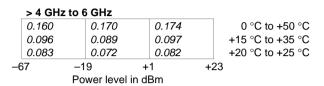
Additional characteristics of the R&S®NRP-Z56/-Z57 thermal power sensors (continued)

Calibration uncertainty 44	DC to 100 MHz	0.040 dB		
	> 100 MHz to 8.0 GHz	0.054 dB		
	> 8.0 GHz to 12.4 GHz	0.063 dB		
	> 12.4 GHz to 26.5 GHz	0.085 dB		
	> 26.5 GHz to 40.0 GHz	0.104 dB		
	> 40.0 GHz to 50.0 GHz 0.142 dB			
	> 50.0 GHz to 59.0 GHz	0.190 dB		
	> 59.0 GHz to 67.0 GHz	0.235 dB		
Temperature effect 39		< 0.002 dB/K at DC		
		< 0.004 dB/K at 50 GHz		
		< 0.006 dB/K at 67 GHz		
Linearity 40		0.007 dB		
Interface to host	power supply	+5 V/0.1 A (USB low-power device)		
	remote control	as a USB device (function) in full-speed mode,		
		compatible with USB 1.0/1.1/2.0 specifications		
	trigger input	differential (0 V/+3.3 V)		
	connector type	ODU Mini-Snap [®] L series,		
		six-pole cylindrical straight plug		
	permissible cable length (including R&S®NRP-Z2 extension cable and R&S®NRP-Z3/-Z4 USB adapter, if applicable)	≤ 10 m (see tables on page 52)		
Dimensions	W×H×L	48 mm × 31 mm × 170 mm		
		(1.89 in × 1.22 in × 6.69 in)		
	length including connecting cable	approx. 1.6 m (62.99 in)		
Weight		< 0.30 kg (0.66 lb)		


Average power sensors in R&S[®]Smart Sensor Technology™


R&S[®]NRP-Z91 average power sensor


Frequency range		9 kHz to 6 GHz				
Impedance matching (SWR)	9 kHz to 2.4 GHz	< 1.13 (1.11)	() 45 °C to . 25 °C			
	> 2.4 GHz to 6.0 GHz	< 1.20 (1.18)	(): +15 °C to +35 °C			
Power measurement range	200 pW to 200 mW (-67 dBm to +23 d					
Max. power	average power	0.4 W (+26 dBm), continuous				
	peak envelope power	1.0 W (+30 dBm) for max. 10 μs				
Measurement subranges	path 1	-67 dBm to -14 dBm				
	path 2	-47 dBm to +6 dBm	-47 dBm to +6 dBm			
	path 3	-27 dBm to +23 dBm				
Transition regions	with automatic path selection, user-	(-19 ± 1) dBm to (-13 ± 1) dBm				
	defined crossover 3 set to 0 dB	(+1 ± 1) dBm to (+7 ± 1) dBm				
Dynamic response	rise time 10 %/90 %	< 5 ms				
Acquisition	sample rate (continuous)	133.358 kHz				
Zero offset	initial, without zeroing					
	path 1	< 470 (100) pW				
	path 2	< 47 (10) nW				
	path 3	< 4.7 (1) µW				
	after external zeroing 6 7	1				
	path 1	< 104 (64) pW				
	path 2	< 10.0 (6) nW	(): typical at 1 GHz			
	path 3	< 1.00 (0.6) µW	+15 °C to +35 °C			
Zero drift ⁸	path 1	< 35 (0) pW				
	path 2	< 3.0 (0) nW				
	path 3	< 0.3 (0) µW				
Measurement noise 9	path 1	< 65 (40) pW				
	path 2	< 6.3 (4) nW				
	path 3	< 0.63 (0.4) µW				


R&S®NRP-Z91 average power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

Uncertainty for relative power measurements ¹¹ in dB

	9 kHz to < 20 kHz							
+23	0.226	0.229	0.027					
	0.084	0.080	0.022					
+7	0.046	0.044	0.022					
			_					
+1	0.226	0.027	0.229					
	0.083	0.022	0.080					
-13	0.045	0.022	0.044					
		_						
-19	0.023	0.226	0.226					
	0.022	0.083	0.084					
-67	0.022	0.045	0.046					
−67 −19/−)/ - 13 +	-1/+7	+23				
Power level in dBm								

	20 kHz	to < 1	00 MHz			
+23	0.206		0.215	0.027		0 °C to +50 °C
	0.082		0.078	0.022		+15 °C to +35 °C
+7	0.046		0.044	0.022		+20 °C to +25 °C
+1	0.205		0.027	0.215		0 °C to +50 °C
	0.081		0.022	0.078		+15 °C to +35 °C
-13	0.044		0.022	0.044		+20 °C to +25 °C
-19	0.023		0.205	0.206		0 °C to +50 °C
	0.022		0.081	0.082		+15 °C to +35 °C
-67	0.022		0.044	0.046		+20 °C to +25 °C
-6	57	-19/-	13 +1	1/+7	+23	
		Powe	r level in c	dBm		

	100 MHz	to 4	GHz				
+23	0.209		0.218		0.038		
	0.088		0.085		0.032		
+7	0.055		0.047		0.031		
					·		
+1	0.206		0.028		0.218		
	0.083		0.022		0.085		
-13	0.048		0.022		0.047		
		_					
-19	0.023		0.206		0.209		
	0.022		0.083		0.088		
-67	0.022		0.048		0.055		
-6	67 – 1	9/–1	3	+1/	+7	+23	
	Power level in dBm						

	> 4 GH	z to 6	GHz				
+23	0.215		0.223		0.049		0 °C to +50 °C
	0.097		0.093		0.044		+15 °C to +35 °C
+7	0.066		0.059		0.043		+20 °C to +25 °C
+1	0.210		0.030		0.223		0 °C to +50 °C
	0.088		0.022		0.093		+15 °C to +35 °C
-13	0.054		0.022		0.059		+20 °C to +25 °C
			·				
-19	0.024		0.210		0.215		0 °C to +50 °C
	0.022		0.088		0.097		+15 °C to +35 °C
-67	0.022		0.054		0.066		+20 °C to +25 °C
-67	7	-19/-	-13	+1/-	+7	+23	
	Power level in dBm						

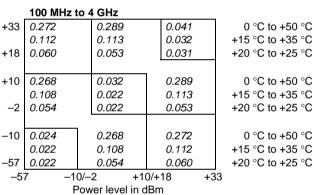
R&S®NRP-Z92 average power sensor

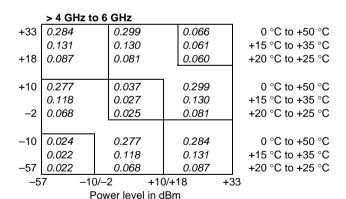
Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the $R\&S^{\otimes}NRP-Z91$ when operating the power sensor section alone.

Frequency range		9 kHz to 6 GHz	
Impedance matching (SWR)	9 kHz to 2.4 GHz < 1.14		
	> 2.4 GHz to 6.0 GHz	< 1.20	
Power measurement range	Continuous Average	2 nW to 2 W (-57 dBm to	+33 dBm)
Max. power	average power 3 W (+35 dBm), continuous (see diag		us (see diagram)
	peak envelope power	10 W (+40 dBm) for max.	10 μs
Measurement subranges	path 1	-57 dBm to -4 dBm	
	path 2	-37 dBm to +16 dBm	
	path 3	-17 dBm to +33 dBm	
Transition regions	with automatic path selection, user-	(-9 ± 1.5) dBm to (-3 ± 1.5) dBm	
	defined crossover 3 set to 0 dB	(+11 ± 1.5) dBm to (+17 ± 1.5) dBm	
Dynamic response	rise time 10 %/90 %	< 5 ms	
Acquisition	sample rate (continuous)	133.358 kHz	
Zero offset	initial, without zeroing		
	path 1	< 5.9 (1.2) nW	
	path 2	< 590 (120) nW	
	path 3	< 59 (12) μW	
	after external zeroing 6 7		
	path 1	< 1.3 (0.7) nW	
	path 2	< 120 (60) nW	(): typical at 1 GHz
	path 3	< 12 (6) μW	+15 °C to +35 °C
Zero drift ⁸	path 1	< 0.4 (0) nW	
	path 2	< 40 (0) nW	
	path 3	< 4 (0) µW	
Measurement noise 9	path 1	< 0.8 (0.4) nW	
	path 2	< 80 (40) nW	
	path 3	< 8 (4) µW	

R&S®NRP-Z92 average power sensor (continued)

Uncertainty for absolute power measurements 10 in dB

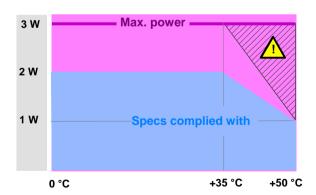

	9 kHz to < 100 MHz					
	0.180	0.237	_	_		
	0.180	0.237	0.281	_		
	0.180	0.237	0.281	0.316		
	0.096	0.124	0.149	0.170		
	0.079	0.088	0.104	0.119		
-57 to +20 to +30 to +32 to +33						
Power level in dBm						


	100 MHz	to < 4 GI	Ηz				
	0.186	0.242	-	_	0 °C to +50 °C		
	0.186	0.242	0.285	_	0 °C to +40 °C		
	0.186	0.242	0.285	0.320	0 °C to +35 °C		
	0.106	0.133	0.157	0.176	+15 °C to +35 °C		
	0.085	0.098	0.113	0.128	+20 °C to +25 °C		
-5	7 to +2	.0 to +	30 to -	+32 to +	33		
	Power level in dBm						

	4 GHz to	6 GHz				
	0.203	0.255	_	_	0 °C to +50 °C	
	0.203	0.255	0.296	_	0 °C to +40 °C	
	0.203	0.255	0.296	0.330	0 °C to +35 °C	
	0.133	0.156	0.176	0.194	+15 °C to +35 °C	
	0.116	0.125	0.137	0.151	+20 °C to +25 °C	
-5	-57 to +20 to +30 to +32 to +33					
	Power level in dBm					

Uncertainty for relative power measurements in dB $^{11\ 12}$

	9 kHz t	o < 10	0 MHz			
+33	0.286		0.298		0.031	
	0.108		0.109		0.022	
+18	0.052		0.045		0.022	
+10	0.283		0.031		0.298	
	0.108		0.022		0.109	
-2	0.051		0.022		0.045	
-10	0.023		0.283		0.286	
	0.022		0.108		0.108	
-57	0.022		0.051		0.052	
-5	57	-10/-	2	+10/+1	18	+33
Power level in dBm						


Additional characteristics of the R&S®NRP-Z91/-Z92 average power sensors

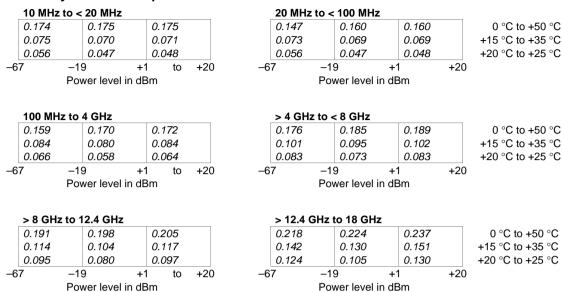
Sensor type		three-path diode power sensor; R&S®NRP-Z92 with preceding RF power attenuator
Measurand		power of incident wave
		power of source (DUT) into 50 Ω ¹³
RF connector		N (male)
RF attenuation 14	R&S [®] NRP-Z91	not applicable
	R&S [®] NRP-Z92	10 dB
Measurement function	stationary and recurring waveforms	Continuous Average
Continuous Average function	measurand	mean power over recurring acquisition interval
	aperture	1 ms to 300 ms (20 ms default)
	window function	uniform or von Hann 15
	duty cycle correction 16	0.001 % to 99.999 %
	capacity of measurement buffer ¹⁷	1 to 1024 results
Averaging filter	modes	AUTO OFF (fixed averaging number)
		AUTO ON (continuously auto-adapted)
		AUTO ONCE (automatically fixed once)
	AUTO OFF	71010 0110E (dutomationly fixed office)
	averaging number	2N; N = 0 to 16
	AUTO ON/ONCE	214,14 = 0 to 10
	Normal operating mode	averaging number adapted to resolution setting
	Normal operating mode	and power to be measured
	Fixed Noise operating mode	averaging number adapted to specified noise
	Tixed Noise operating mode	content
	result output	Content
	•	continuous, independent of averaging number
	Moving mode	can be limited to 0.1 s ⁻¹
	rate	
Attamustics competies	Repeat mode	only final result
Attenuation correction	function	corrects the measurement result by means of a
		fixed factor (dB offset)
Funds and discount 20	range	-200.000 dB to +200.000 dB
Embedding ²⁰	function	incorporates a two-port device at the sensor input
		so that the measurement plane is shifted to the
		input of this device
	parameters	S ₁₁ , S ₂₁ , S ₁₂ and S ₂₂ of device
0	frequencies	1 to 1000
Gamma correction	function	removes the influence of impedance mismatch
		from the measurement result so that the power of
		the source (DUT) into 50 Ω can be read
	parameters	magnitude and phase of reflection coefficient of
		source (DUT)
Frequency response correction	function	takes the frequency response of the sensor
		section and of the RF power attenuator into
		account (if applicable)
	parameter	center frequency of test signal
	residual uncertainty	see specification of calibration uncertainty and
		uncertainty for absolute and relative power
21	10.11	measurements
Measurement time ²¹	Continuous Average	$2 \times (aperture + 5 ms) \times 2^N - 3.4 ms + t_d$
2 ⁿ : averaging number		t _d must only be taken into account with activated
		auto delay (1 ms to 20 ms depending on
	1 1 1 11 11 11 11	temperature) 43
Zeroing (duration)	depends on setting of averaging filter	
	AUTO ON	4 s
	AUTO OFF, integration time ²²	
	< 4 s	4 s
	4 s to 16 s	integration time

Additional characteristics of the R&S®NRP-Z91/-Z92 average power sensors (continued)

Measurement error due to		n = 2	n = 3	n: multiple	
harmonics ²³	-30 dBc	< 0.001 dB	< 0.003 dB	of carrier	
	–20 dBc	< 0.002 dB	< 0.010 dB	frequency	
	-10 dBc	< 0.010 dB < 0.040 dB			
Measurement error due to modulation ²⁴	general depends on CCDF and RF bandwidth of test signal				
	WCDMA (3GPP test model 1-64)				
	worst case -0.02 dB to +0.07 dB				
	typical	-0.01 dB to +0.0	03 dB		
Change of input reflection co-	9 kHz to 2.4 GHz	< 0.02 (0.01)	() 45.00 (-	.05.00	
efficient with respect to power 25	> 2.4 GHz	< 0.03 (0.02)	(): +15 °C to	+35 °C	
Calibration uncertainty 26	R&S [®] NRP-Z91	path 1	path 2	path 3	
	9 kHz to < 100 MHz	0.056 dB	0.047 dB	0.048 dB	
	100 MHz to 4.0 GHz	0.066 dB	0.057 dB	0.057 dB	
	> 4.0 GHz to 6.0 GHz	0.083 dB	0.071 dB	0.072 dB	
	R&S [®] NRP-Z92 ²⁷	path 1	path 2	path 3	
	9 kHz to < 100 MHz	0.078 dB	0.072 dB	0.073 dB	
	100 MHz to 4.0 GHz	0.084 dB	0.077 dB	0.077 dB	
	> 4.0 GHz to 6.0 GHz	0.110 dB	0.095 dB	0.095 dB	
Interface to host	power supply	+5 V/0.2 A (USB high-power device)			
	remote control	as a USB device (function) in full-speed mode, compatible with USB 1.0/1.1/2.0 specifications			
	trigger input	differential (0 V/+3.3 V)			
	connector type	ODU Mini-Snap	® L series,		
		six-pole cylindric	cal straight plug		
	permissible cable length (including R&S®NRP-Z2 extension cable and R&S®NRP-Z3/-Z4 USB adapter, if applicable)	≤ 10 m (see tables on page 52)			
Dimensions (W × H × L)	R&S®NRP-Z91	48 mm × 31 mm	170 mm		
		(1.89 in × 1.22 i	n × 6.69 in)		
	R&S [®] NRP-Z92	48 mm × 31 mm	x 214 mm		
		(1.89 in × 1.22 i	n × 8.42 in)		
	length including connecting cable	approx. 1.6 m (6	62.99 in)		
Weight	R&S [®] NRP-Z91	< 0.30 kg (0.66	lb)		
	R&S [®] NRP-Z92	< 0.37 kg (0.82 lb)			

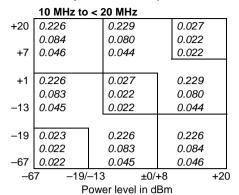
Power rating of the R&S®NRP-Z92

Hatched area: The maximum surface temperatures permitted by IEC 1010-1 are exceeded. Provide protection against inadvertent contacting or apply only a short-term load to the power sensor.


Level control sensors in R&S[®]Smart Sensor Technology™

R&S®NRP-Z28 level control sensor

Frequency range		10 MHz to 18	8 GHz	10	
Impedance matching (SWR) and		input	output	insertion loss 46	
insertion loss		SWR	SWR 45	(): typical	
	10 MHz to 2.4 GHz	< 1.35	< 1.11	< 8.0 (7.0) dB	
	> 2.4 GHz to 4.0 GHz	< 1.45	< 1.15	< 8.5 (7.5) dB	
	> 4.0 GHz to 8.0 GHz	< 1.75	< 1.22	< 9.5 (8.5) dB	
	> 8.0 GHz to 12.4 GHz	< 1.80	< 1.30	< 10.5 (9) dB	
	> 12.4 GHz to 18.0 GHz	< 1.90	< 1.30	< 11.0 (10) dB	
Power measurement range	Continuous Average	200 pW to 10	00 mW (–67	dBm to +20 dBm)	
RF output	Burst Average			dBm to +20 dBm)	
	Timeslot/Gate Average			dBm to +20 dBm) ¹	
	Trace			Bm to +20 dBm) ²	
Max. power	average power	10		z to 120 dz,	
RF input	10 MHz to 2.4 GHz	0.7 W (+28.5	5 dRm)		
iti iiiput	> 2.4 GHz to 8.0 GHz				
	> 8.0 GHz to 12.4 GHz		0.9 W (+29.5 dBm) 1.1 W (+30.5 dBm) continuo		
	> 12.4 GHz to 18.0 GHz	1.3 W (+31.0			
				an nower (for 10 we)	
Management and and an an	peak envelope power	-67 dBm to		ge power (for 10 µs)	
Measurement subranges	path 1				
	path 2	-46 dBm to +6 dBm			
	path 3	-26 dBm to +20 dBm		1/12	
Transition regions	with automatic path selection, user-	$(-19^{-1/+2})$ dBm to $(-13^{-1/+2})$ dBm $(+1^{-1/+2})$ dBm to $(+7^{-1/+2})$ dBm			
	defined crossover ³ set to 0 dB	,		²) dBm	
Dynamic response	video bandwidth	> 50 kHz (100 kHz)			
	single-shot bandwidth	> 50 kHz (10		(): +15 °C to +35 °C	
	rise time 10 %/90 %	< 8 µs (4 µs)			
Acquisition	sample rate (continuous)	133.358 kHz	(default) or	119.467 kHz ⁴	
Triggering	internal				
	threshold level range	-40 dBm to +20 dBm			
	threshold level accuracy	identical to uncertainty for absolute power			
		measurements			
	threshold level hysteresis	0 dB to 10 dB			
	dropout ⁵	0 s to 10 s	0 s to 10 s		
	external	see R&S®NRP and R&S®NRP-Z3 USB adapter			
	slope (external, internal)	pos./neg.			
	delay	-5 ms to +10	00 s		
	hold-off	0 s to 10 s			
	resolution (delay, hold-off, dropout)	sample perio	od		
	source	internal, exte	rnal, immedi	ate, bus, hold	
Zero offset	initial, without zeroing				
	path 1	< 505 [600] (Wq (001)		
	path 2	< 52 [60] (10			
	path 3	< 5.2 [6] (1)			
	after external zeroing 6 7	10.2[0](./)		(): typical at 1 GHz	
	path 1	< 114 [132] (′67) nW	+15 °C to +35 °C	
	path 2	< 11 [13] (6)			
	path 3	< 1.1 [1.3] (0)		[]: 8 GHz to 18 GH	
Zero drift ⁸	path 1	< 39 [44] (0)			
Leto utilit		< 3.3 [3.8] (0)			
	path 2				
Macauramant nai 9	path 3	< 0.33 [0.38]			
Measurement noise ⁹	path 1	< 72 [83] (42			
	path 2	< 7 [8] (4) nV			
	path 3	< 0.7 [0.8] (0).4) μW		


R&S®NRP-Z28 level control sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

R&S®NRP-Z28 level control sensor (continued)

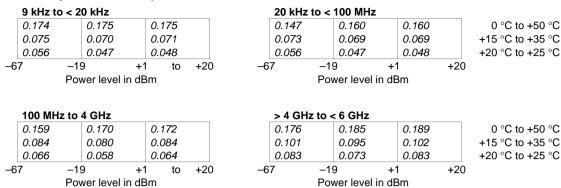
Uncertainty for relative power measurements ¹¹ in dB

	20 MHz to	< 100 MHz				
+20	0.206	0.215	0.027	0 °C to +50 °C		
	0.082	0.078	0.022	+15 °C to +35 °C		
+7	0.046	0.044	0.022	+20 °C to +25 °C		
			_			
+1	0.205	0.027	0.215	0 °C to +50 °C		
	0.081	0.022	0.078	+15 °C to +35 °C		
-13	0.044	0.022	0.044	+20 °C to +25 °C		
-19	0.023	0.205	0.206	0 °C to +50 °C		
	0.022	0.081	0.082	+15 °C to +35 °C		
-67	0.022	0.044	0.046	+20 °C to +25 °C		
-	67 –19	/-13 ±0	/+8 +2	0		
	Power level in dBm					

	100 MHz t	o 4 GHz				
+20	0.209	0.218	0.038			
	0.088	0.085	0.032			
+7	0.055	0.047	0.031			
			_			
+1	0.206	0.028	0.218			
	0.083	0.022	0.085			
-13	0.048	0.022	0.047			
-19	0.023	0.206	0.209			
	0.022	0.083	0.088			
-67	0.022	0.048	0.055			
-6	7 –19/	′–13 +1/·	+7 +20			
Power level in dBm						

	> 4 GHz to 8 GHz						
+20	0.215	0.223	0.049	0 °C to +50 °C			
	0.097	0.093	0.044	+15 °C to +35 °C			
+7	0.066	0.059	0.043	+20 °C to +25 °C			
+1	0.210	0.030	0.223	0 °C to +50 °C			
	0.088	0.022	0.093	+15 °C to +35 °C			
-13	0.054	0.022	0.059	+20 °C to +25 °C			
-19	0.024	0.210	0.215	0 °C to +50 °C			
	0.022	0.088	0.097	+15 °C to +35 °C			
-67	0.022	0.054	0.066	+20 °C to +25 °C			
-	- 67 -19/-13 +1/+7 +20						
Power level in dBm							

	> 8 GHz to	12.4 GHz			
+20	0.224	0.231	0.064		
	0.111	0.106	0.061		
+7	0.084	0.077	0.060		
+1	0.216	0.034	0.231		
	0.096	0.027	0.106		
-13	0.063	0.025	0.077		
-19	0.024	0.216	0.224		
	0.022	0.096	0.111		
-67	0.022	0.063	0.084		
-6	7 –19/-	–13 +1/	+7 +2		
Power level in dBm					


	> 12.4	GHz	to 18 GHz	<u>z</u>			
+20	0.244		0.245		0.086		0 °C to +50 °C
	0.135		0.128		0.084		+15 °C to +35 °C
+7	0.110		0.102		0.083		+20 °C to +25 °C
+1	0.230		0.040		0.245		0 °C to +50 °C
	0.112		0.034		0.128		+15 °C to +35 °C
-13	0.079		0.033		0.102		+20 °C to +25 °C
-19	0.024		0.230		0.244		0 °C to +50 °C
	0.022		0.112		0.135		+15 °C to +35 °C
-67	0.022		0.079		0.110		+20 °C to +25 °C
_	67	-19/	/–13	+1	/+7	+2	0
		Po۱	wer level in	dΒ	m		

R&S®NRP-Z98 level control sensor

Frequency range		9 kHz to 6	GHz		
Impedance matching (SWR) and insertion loss		input SWR	output SWR ⁴⁵	insertion loss ⁴⁶ (): typical	
	9 kHz to 2.4 GHz	< 1.35	< 1.11	< 8.0 (7.0) dB	
	> 2.4 GHz to 4.0 GHz	< 1.45	< 1.15	< 8.5 (7.5) dB	
	> 4.0 GHz to 6.0 GHz	< 1.75	< 1.22	< 9.5 (8.5) dB	
Power measurement range RF output	Continuous Average	200 pW to	100 mW (-67	dBm to +20 dBm)	
Max. power	average power				
RF input	9 kHz to 2.4 GHz	0.7 W (+28	3.5 dBm)	continuous	
	> 2.4 GHz to 6.0 GHz	0.9 W (+29	9.5 dBm)		
	peak envelope power	7.5 dB abo	ove max. avera	ge power (for 10 µs)	
Measurement subranges	path 1	-67 dBm t	o –14 dBm	, , , ,	
_	path 2 —46 dBm to +6 dBm			m	
	path 3				
Transition regions	with automatic path selection, user-	^{1/+2}) dBm			
	defined crossover 3 set to 0 dB $(+1^{-1/+2})$ dBm to $(+7^{-1/+2})$ dBm				
Dynamic response	rise time 10 %/90 % < 5 ms				
Acquisition	sample rate (continuous) 133.358 kHz				
Zero offset	initial, without zeroing				
	path 1	< 505 (100)) pW		
	path 2	< 52 (10) r	ιW		
	path 3	< 5.2 (1) µ	W		
	after external zeroing 6 7				
	path 1	< 114 (67)	pW		
	path 2	< 11 (6) n\	N	(): typical at 1 GHz	
	path 3	< 1.1 (0.6)	μW	+15 °C to +35 °C	
Zero drift ⁸	path 1	< 39 (0) pV	N		
	path 2	< 3.3 (0) nW			
	path 3	< 0.33 (0)	μW		
Measurement noise 9	path 1	< 72 (42) p			
	path 2	< 7 (4) nW			
	path 3	< 0.7 (0.4)	μW		

R&S®NRP-Z98 level control sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

Uncertainty for relative power measurements ¹¹ in dB

0	, .cc.a	o pomo: mo	aoa. oo		-		
9 kHz to	< 20 kHz			20 kHz	to < 100 MHz	Z	
0.226	0.229	0.027	+20	0.206	0.215	0.027	0 °C to +50 °C
0.084	0.080	0.022		0.082	0.078	0.022	+15 °C to +35 °C
0.046	0.044	0.022	+7	0.046	0.044	0.022	+20 °C to +25 °C
0.226	0.027	0.229	+1	0.205	0.027	0.215	0 °C to +50 °C
0.083	0.022	0.080		0.081	0.022	0.078	+15 °C to +35 °C
0.045	0.022	0.044	-13	0.044	0.022	0.044	+20 °C to +25 °C
0.023	0.226	0.226	-19	0.023	0.205	0.206	0 °C to +50 °C
0.022	0.083	0.084		0.022	0.081	0.082	+15 °C to +35 °C
0.022	0.045	0.046	-67	0.022	0.044	0.046	+20 °C to +25 °C
7	-19/-13	+1/+7 +2	20 –6	7	-19/-13	+1/+7	+20
	Power level in	n dBm			Power level	in dBm	
	9 kHz to 0.226 0.084 0.046 0.226 0.083 0.045 0.023 0.022 0.022	9 kHz to < 20 kHz	9 kHz to < 20 kHz 0.226 0.229 0.027 0.084 0.080 0.022 0.046 0.044 0.022 0.226 0.027 0.229 0.083 0.022 0.080 0.045 0.022 0.044 0.023 0.226 0.226 0.022 0.083 0.084 0.022 0.045 0.046	9 kHz to < 20 kHz	0.226 0.229 0.027 +20 0.206 0.084 0.080 0.022 0.082 0.082 0.046 0.044 0.022 +7 0.046 0.226 0.027 0.229 +1 0.205 0.083 0.022 0.080 0.081 0.045 0.022 0.044 -13 0.044 0.023 0.226 0.226 -19 0.023 0.022 0.083 0.084 -67 0.022 0.022 0.045 0.046 -67 0.022 7 -19/-13 +1/+7 +20 -67	9 kHz to < 20 kHz 20 kHz to < 100 MHz 0.226 0.229 0.027 +20 0.206 0.215 0.084 0.080 0.022 0.082 0.082 0.078 0.046 0.044 0.022 +7 0.046 0.044 0.226 0.027 0.229 +1 0.205 0.027 0.083 0.022 0.080 0.081 0.022 0.045 0.022 0.044 -13 0.044 0.022 0.022 0.083 0.084 0.022 0.081 0.022 0.081 0.022 0.045 0.046 -67 0.022 0.044 7 -19/-13 +1/+7 +20 -67 -19/-13	9 kHz to < 20 kHz 20 kHz to < 100 MHz 0.226 0.229 0.027 0.084 0.080 0.022 0.046 0.044 0.022 0.226 0.027 0.229 0.083 0.022 0.080 0.045 0.022 0.044 0.023 0.226 0.226 0.022 0.083 0.022 0.023 0.226 0.226 0.022 0.083 0.084 0.022 0.083 0.084 0.022 0.045 0.046

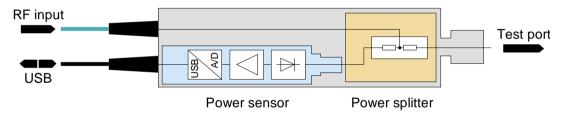
	100 MH	z to 4	GHz				> 4 GHz	to < 6 GH	lz		
+20	0.209		0.218		0.038	+20	0.215	0	223	0.049	0 °C to +50 °C
	0.088		0.085		0.032		0.097	0.	093	0.044	+15 °C to +35 °C
+7	0.055		0.047		0.031	+7	0.066	0.	059	0.043	+20 °C to +25 °C
+1	0.206		0.028		0.218	+1	0.210	0.	030	0.223	0 °C to +50 °C
	0.083		0.022		0.085		0.088	0.	022	0.093	+15 °C to +35 °C
-13	0.048		0.022		0.047	-13	0.054	0.	022	0.059	+20 °C to +25 °C
-19	0.023		0.206		0.209	-19	0.024	0	210	0.215	0 °C to +50 °C
	0.022		0.083		0.088		0.022	0.	088	0.097	+15 °C to +35 °C
-67	0.022		0.048		0.055	-67	0.022	0.	054	0.066	+20 °C to +25 °C
-6	7	-19/-	-13	+1/+7	7 +20	0 –6	7	-19/-13	+1/	′ + 7 +20	
		Pow	ver level in	dBm				Power lev	el in d	Bm	

Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors

Shaded areas apply only to the R&S®NRP-Z28.

Sensor type		three-path diode power sensor combined with a					
••		resistive power splitter in a power leveling setup					
		(see diagram at the end of this section)					
Measurand		power available on a 50 Ω load					
		power of wave emanating at RF output 13					
RF connectors		N (male)					
Measurement functions	stationary and recurring waveforms	Continuous Average					
		Burst Average					
		Timeslot/Gate Average					
		Trace					
	single events	Trace					
Continuous Average function	measurand	mean power over recurring acquisition interval					
	aperture						
	R&S [®] NRP-Z28	10 μs to 300 ms (20 ms default)					
	R&S [®] NRP-Z98	1 ms to 300 ms (20 ms default)					
	window function	uniform or von Hann 15					
	duty cycle correction ¹⁶	0.001 % to 99.999 %					
	capacity of measurement buffer 17	1 to 1024 results					
Burst Average function	measurand	mean power over burst portion of recurring					
-		signal (trigger settings required)					
	detectable burst width	20 μs to 50 ms					
	minimum gap between bursts	10 µs					
	dropout period 18 for burst end	0 s to 3 ms					
	detection						
	exclusion periods ¹⁹						
	start	0 to burst width					
	end	0 s to 3 ms					
	resolution (dropout and exclusion periods)	sample period (≈ 8 µs)					
Timeslot/Gate Average function	measurand	mean power over individual timeslots/gates of recurring signal					
	number of timeslots/gates	1 to 128 (consecutive)					
	nominal length	10 μs to 0.1 s					
	start of first timeslot/gate	at delayed trigger event					
	exclusion periods 19	, , , , , , , , , , , , , , , , , , , ,					
	start	0 to nominal length					
	end	0 s to 3 ms					
	resolution (nominal length and	sample period (≈ 8 µs)					
	exclusion periods)						
Trace function	measurand	mean power over pixel length					
	acquisition						
	length (△)	100 µs to 300 ms					
	start (referenced to delayed trigger)	-5 ms to 100 s					
	result						
	pixels (M)	1 to 1024					
	resolution (\(\Delta / M \)						
	non-recurring or internally triggered	≥ 10 µs					
	recurring and externally triggered	≥ 2.5 µs					

Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors (continued)


Shaded areas apply only to the R&S®NRP-Z28. AUTO OFF (fixed averaging number) Averaging filter modes AUTO ON (continuously auto-adapted) AUTO ONCE (automatically fixed once) AUTO OFF supported measurement functions averaging number 2^N ; N = 0 to 16 (13 for Trace function) **AUTO ON/ONCE** supported measurement functions Continuous Average, Burst Average, Timeslot/Gate Average Normal operating mode averaging number adapted to resolution setting and power to be measured averaging number adapted to specified noise Fixed Noise operating mode result output Moving mode continuous, independent of averaging number can be limited to 0.1 s⁻¹ rate Repeat mode only final result Attenuation correction function corrects the measurement result by means of a fixed factor (dB offset) range -200.000 dB to +200.000 dB Embedding function incorporates a two-port device at the RF output so that the measurement plane is shifted to the output of this device parameters S_{11} , S_{21} , S_{12} and S_{22} of device frequencies 1 to 1000 Gamma correction removes the influence of impedance mismatch function from the measurement result so that the power of the wave emanating at the RF output can be parameters magnitude and phase of reflection coefficient of Frequency response correction function takes the frequency response of the sensor section and of the power splitter into account parameter center frequency of test signal residual uncertainty see specification of calibration uncertainty and uncertainty for absolute and relative power measurements Measurement time 21 Continuous Average $2 \times (aperture + 105 \mu s) \times 2^N + t_7$ R&S[®]NRP-Z28 2^N: averaging number t_z : < 1.6 ms (0.9 ms, typical) T: set number of timeslots $2 \times (aperture + 5 ms) \times 2^N - 3.4 ms + t_d$ R&S®NRP-Z98 w: nominal length of timeslot t_d must be taken into account with activated auto delay (1 ms to 20 ms depending on temperature) 43 buffered 17, without averaging $2 \times (aperture + 250 \mu s) \times buffer size + t_z$ Timeslot/Gate Average $\leq 2 \times \text{signal period} \times (2^N + \frac{1}{2}) + t_z$ signal period – $T \times w > 100 \mu s$ all other cases $\leq 4 \times \text{signal period} \times (2^N + \frac{1}{4}) + t_7$ Zeroing (duration) depends on setting of averaging filter **AUTO ON** AUTO OFF, integration time 22 4 s < 4 s4 s to 16 s integration time > 16 s 16 s Measurement error due to n=2n = 3harmonics 23 -30 dBc < 0.001 dB < 0.003 dB n: multiple of carrier frequency -20 dBc < 0.002 dB < 0.010 dB

-10 dBc

< 0.010 dB < 0.040 dB

Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors (continued)

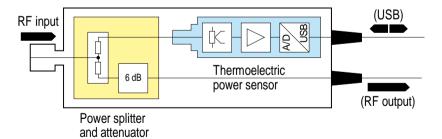
Measurement error due to modulation ²⁴	general	depends on (signal	depends on CCDF and RF bandwidth of test signal					
	WCDMA (3GPP test model 1-64)							
	worst case	-0.02 dB to +	0.07 dB					
	typical	-0.01 dB to +	0.03 dB					
Calibration uncertainty 26		path 1	path 2	path 3				
(R&S®NRP-Z98 up to 6 GHz only)	< 100 MHz	0.056 dB	0.047 dB	0.048 dB				
	100 MHz to 4.0 GHz	0.066 dB	0.057 dB	0.058 dB				
	> 4.0 GHz to 8.0 GHz	0.083 dB	0.072 dB	0.072 dB				
	> 8.0 GHz to 12.4 GHz	0.095 dB	0.077 dB	0.077 dB				
	> 12.4 GHz to 18.0 GHz	0.124 dB	0.100 dB	0.101 dB				
Interface to host	power supply	+5 V/0.2 A (USB high-power device)						
	remote control	as a USB dev	as a USB device (function) in full-speed mode,					
		compatible w	compatible with USB 1.0/1.1/2.0 specifications					
	trigger input	differential (0	differential (0 V/+3.3 V)					
	connector type	ODU Mini-Sn	ap [®] L series,					
		six-pole cylin	drical straight plug	g				
	permissible cable length	≤ 10 m (see t	ables on page 52	2)				
	(including R&S®NRP-Z2 extension							
	cable and R&S®NRP-Z3/-Z4 USB							
	adapter, if applicable)							
Dimensions	W×H×L		mm × 250 mm					
			7 in × 9.84 in)					
	length including connecting cable	approx. 1.75						
Weight		< 0.7 kg (1.54	1 lb)					

Block diagram of the R&S®NRP-Z28/-Z98 level control sensors.

Power sensor modules in R&S[®]Smart Sensor Technology™

R&S®NRP-Z27/-Z37 power sensor modules

Specifications from 18 GHz to 26.5 GHz apply only to the R&S[®]NRP-Z37.


Frequency range	R&S [®] NRP-Z27	DC to 18 GHz					
	R&S [®] NRP-Z37		DC to 26.5 GHz				
Impedance matching (SWR)	RF input	R&S [®] NRP-Z27	7 R&S	®NRP-Z37			
	DC to 2.0 GHz	< 1.15	< 1.1	15			
	> 2.0 GHz to 4.2 GHz	< 1.18	< 1.1	18			
	> 4.2 GHz to 8.0 GHz	< 1.23	< 1.2	23			
	> 8.0 GHz to 12.4 GHz	< 1.25	< 1.2	25			
	> 12.4 GHz to 18.0 GHz	< 1.35	< 1.3	30			
	> 18.0 GHz to 26.5 GHz	_	< 1.4	15			
	RF output	R&S [®] NRP-Z2	7 R&S	®NRP-Z37			
	DC to 8.0 GHz	< 1.6	< 1.6	5			
	> 8.0 GHz to 26.5 GHz	< 2.0	< 2.0)			
Power measurement range		4 µW to 400 m	W (-24 dBm to -	+26 dBm),			
· ·		continuous, in a		,,			
Max. power	average power	0.5 W (+27 dBı					
•			n) for max. 10 m	ninutes			
	peak envelope power	30 W (45 dBm)					
Acquisition	sample rate	20.833 kHz (sig					
Zero offset	after external zeroing 6 7		< 400 nW (typically 200 nW at 1 GHz)				
Zero drift ⁸		< 160 nW					
Measurement noise 9		< 240 nW (typic	< 240 nW (typically 120 nW at 1 GHz)				
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to			
measurements 47		+25 °C	+35 °C	+50 °C			
	with matched load on RF output (SWR < 1.05)						
	DC to < 100 MHz	0.070 dB	0.077 dB	0.103 dB			
	100 MHz to 4.2 GHz	0.075 dB	0.082 dB	0.106 dB			
	> 4.2 GHz to 8.0 GHz	0.087 dB	0.094 dB	0.119 dB			
	> 8.0 GHz to 12.4 GHz	0.093 dB	0.101 dB	0.130 dB			
	> 12.4 GHz to 18.0 GHz	0.112 dB	0.121 dB	0.151 dB			
	> 18.0 GHz to 26.5 GHz	0.122 dB	0.137 dB	0.190 dB			
	with R&S®FSMR26 connected to F	RF output					
	DC to < 100 MHz	0.104 dB	0.109 dB	0.128 dB			
	100 MHz to 4.2 GHz	0.116 dB	0.120 dB	0.138 dB			
	> 4.2 GHz to 8.0 GHz	0.163 dB	0.166 dB	0.181 dB			
	> 8.0 GHz to 18.0 GHz	0.183 dB	0.187 dB	0.207 dB			
	> 18.0 GHz to 26.5 GHz	0.226 dB					
	with R&S®FSMR26 connected to R						
	DC to < 100 MHz	0.067 dB	0.074 dB	0.101 dB			
	100 MHz to 4.2 GHz	0.077 dB	0.083 dB	0.107 dB			
	> 4.2 GHz to 8.0 GHz	0.092 dB	0.099 dB	0.123 dB			
	> 8.0 GHz to 12.4 GHz	0.099 dB	0.107 dB	0.135 dB			
	> 12.4 GHz to 18.0 GHz	0.122 dB	0.130 dB	0.159 dB			
	> 18.0 GHz to 26.5 GHz	0.154 dB	0.167 dB	0.212 dB			
Uncertainty for relative power	7 10.0 0112 10 20.0 0112	0.032 dB	0.707 02	0.2 12 GD			
measurements 48		0.002 02					

Additional characteristics of the R&S®NRP-Z27/-Z37 power sensor modules

Sensor type		thermoelectric power se at RF output (see diagra	ensor with signal pick-off			
		section)	ann at the end of this			
Measurand		power of incident wave				
oaoarana		power of source (DUT) into 50 Ω^{13}				
RF connectors	input power or source (DOT) line 30 12					
	R&S®NRP-Z27	N (male)				
	R&S®NRP-Z37	3.5 mm (male)				
	RF signal output	3.5 mm (male)				
Insertion loss	DC to 2.0 GHz	< 14 (12.5) dB				
Between RF input and RF output	> 2.0 GHz to 4.2 GHz	< 15 (13.5) dB				
, , , , , , , , , , , , , , , , , , , ,	> 4.2 GHz to 8.0 GHz	< 16 (14.0) dB	(): typical			
	> 8.0 GHz to 12.4 GHz	< 17 (14.5) dB				
	> 12.4 GHz to 18.0 GHz	< 18 (15.5) dB				
	> 18.0 GHz to 26.5 GHz	< 19 (16.5) dB				
Measurement function	stationary and recurring waveforms	Continuous Average				
Continuous Average function	measurand	mean power over recur	ring acquisition interval			
	aperture	1 ms to 100 ms (20 ms				
	window function	uniform or von Hann 15	,			
	duty cycle correction 16	0.001 % to 99.999 %				
	capacity of measurement buffer 17	1 to 1024 results				
Averaging filter	modes	AUTO OFF (fixed avera	aging number)			
		,	AUTO ON (continuously auto-adapted)			
			AUTO ONCE (automatically fixed once)			
	AUTO OFF	· ·				
	averaging number	2^{N} ; $N = 0$ to 16				
	AUTO ON/ONCE					
	Normal operating mode	oted to resolution setting				
	Fixed Noise operating mode	averaging number adapted to specified noise content				
	result output	_ contone				
	Moving mode	continuous, independent of averaging number				
	rate	can be limited to 0.1 s ⁻¹				
	Repeat mode	only final result				
Attenuation correction	function	-	ent result by means of a			
	Tanona.	fixed factor (dB offset)	one roome by mount or a			
	range	-200.000 dB to +200.00	00 dB			
Gamma correction	function	removes the influence of				
			result so that the power			
		of the source (DUT) into				
	parameters	magnitude and phase of source (DUT)	f reflection coefficient of			
Frequency response correction	function	takes the frequency response of the sensor section and of the power splitter into account				
	parameter	center frequency of test				
	residual uncertainty	see specification of cali				
	, , , , , , , , , , , , , , , , , , ,	uncertainty for absolute				
Load interference correction	function	removing the influence	of the load on the RF			
		signal output from the power measuresult				
	parameters	magnitude and phase of load	f reflection coefficient of			
	residual uncertainty	see specification of load interference error				

Additional characteristics of the R&S®NRP-Z27/-Z37 power sensor modules (continued)

Measurement time 21		2 x (aperture + 450 µs) x	$2^{N} + 4 \text{ ms} + t_{d}$			
2 ^N : averaging number		t _d (80 ms) must be taken i	into account when auto			
		delay ⁴³ is active				
Zeroing (duration)	depends on setting of averaging filter					
	AUTO ON 4 s					
	AUTO OFF, integration time ²²					
	< 4 s	4 s				
	4 s to 16 s	integration time				
	> 16 s	16 s				
Calibration uncertainty 49	DC to < 100 MHz	0.063 dB				
	100 MHz to 4.2 GHz	0.070 dB				
	> 4.2 GHz to 8.0 GHz	0.082 dB				
	> 8.0 GHz to 12.4 GHz	0.088 dB				
	> 12.4 GHz to 18.0 GHz	0.109 dB				
	> 18.0 GHz to 26.5 GHz	0.118 dB				
Temperature effect 50	DC to 4.2 GHz	< 0.004 dB/K				
	> 4.2 GHz to 8.0 GHz	< 0.005 dB/K				
	> 8.0 GHz to 12.4 GHz < 0.005 dB/K					
	> 12.4 GHz to 18.0 GHz < 0.006 dB/K					
	> 18.0 GHz to 26.5 GHz	< 0.009 dB/K				
Linearity ⁴⁰	for power levels < 100 mW (20 dBm)	< 0.020 dB				
Power coefficient 51		< (0.02 + 0.002 f/GHz) dB	3/W			
Load interference error 52	DC to 2.0 GHz	< 0.061 (0.003) dB				
From RF signal output	> 2.0 GHz to 12.4 GHz	< 0.050 (0.012) dB	values in () after load interference			
	> 12.4 GHz to 18.0 GHz	< 0.043 (0.016) dB				
	> 18.0 GHz to 26.5 GHz	< 0.043 (0.022) dB	correction			
Interface to host	power supply	+5 V/0.1 A (USB low-pow	er device)			
	remote control	as a USB device (function	n) in full-speed mode,			
		compatible with USB 1.0/2	compatible with USB 1.0/1.1/2.0 specifications			
	trigger input	differential (0 V/+3.3 V)				
	connector type	ODU Mini-Snap® L series				
		six-pole cylindrical straigh	it plug			
	permissible cable length	≤ 10 m (see table on page	e 52)			
	(including R&S®NRP-Z2 extension					
	cable and R&S®NRP-Z3/-Z4 USB					
	adapter, if applicable)					
Dimensions	W×H×L	48 mm × 50 mm × 250 mm				
		$(1.89 \text{ in} \times 1.97 \text{ in} \times 9.84 \text{ ir}$				
	length including connecting cable approx. 1.75 m (68.89 in)					
Weight		< 0.7 kg (1.54 lb)				

Block diagram of the R&S®NRP-Z27/-Z37 power sensor modules.

Accessories for sensors

R&S®NRP-Z2 extension cables

Application		for extending the connection between an R&S®NRP-Zxx power sensor and the R&S®NRP base unit, another Rohde & Schwarz measuring instrument or an R&S®NRP-Z3/-Z4 USB adapter
Connectors	type	ODU Mini-Snap [®] L series, size 2, six-pole receptacle
	sensor side	
	model .03/.05/.10	in-line receptacle
	model .15	panel-mount receptacle (bulkhead jack) for
		< 5 mm wall thickness
	host side	straight plug
Length	model .03	1.5 m
	model .05/.15	3.5 m
	model .10	8.5 m
Permissible length	including power sensor and R&S®NRP-Z3/-Z4 USB adapter or R&S®NRP-Z5 sensor hub, if applicable	see tables below

Supported combinations with R&S®NRP-Z3/-Z4 USB adapters

R&S [®] NRP-		R&S [®] NRP-Z2	R&S [®] NRP-Z2		R&S [®] NRP-Z4	R&S [®] NRP-Z3/-Z4		total length in m
Zxx power sensor		model .03	model .05 .15		model .04	model .02		
•	+	_	-	+	•	_	=	2.0
•		_	-	•	_	•		3.5
•		•	_		_	•		5.0
•			•		•	_		5.5
•			•		_	•		7.0

Supported combinations with R&S®NRP base unit or other Rohde & Schwarz measuring instruments with ODU Mini-Snap® receptacle (e.g. R&S®FSMR, R&S®SMA200A, R&S®SMF100A)

R&S [®] NRP- Zxx		R&S [®] NRP-Z2	R&S [®] NRP-Z2	R&S [®] NRP-Z2		total length in m	
power sensor	+	model .03	model .05 .15	model .10	=		shaded combinations not permissible for R&S®NRP-Z81power sensor
•		•	_	_		3.0	
•		_	•	_		5.0	
•		_	_	•		10.0	

Supported combinations with R&S®NRP-Z5 sensor hub (sensor to hub)

R&S [®] NRP-Zxx			R&S®NRP-Z2			R&S [®] NRP-Z5		total length
power sensor		model .03	model .05	model .10		sensor hub		in m
			.15				_	
•	+	•	_	_	+	•	=	3.0
•		_	•	_		•		5.0
•		_	_	•		•		10.0

Supported combinations with R&S®NRP-Z5 sensor hub (hub to host)

R&S [®] NRP-Z5		R&S®N	NRP-Z2	R&S [®] N	IRP-Z4	standard USB		total length
sensor hub		model .03	model .05	model .04	model .02	cable (max.		in m
			.15			length: 5 m)		
•		•	-	_	_	_		3.0
•	+	_	•	_	_	_	=	5.0
•		_	-	•	_	_		0.5
•		_	_	_	•	_		2.0
•		_	_	_	_	•		5.0

R&S®NRP-Z3 active USB adapter

Application		for connecting an R&S®NRP-Zxx power sensor
		to a USB host (PC or Rohde & Schwarz
		measuring instrument with type A receptacle)
Trigger input	maximum voltage	±15 V
	logic level	
	low	< 0.8 V
	high	> 2.0 V
	input impedance	approx. 5 kΩ
Connectors	sensor	ODU Mini-Snap® L series, size 2, six-pole
		receptacle
	USB host	USB type A plug
Plug-in power supply	voltage/frequency	100 V to 240 V / 50 Hz to 60 Hz
	tolerance	±10 % for voltage, ±3 Hz for frequency
	current consumption	25 mA (typical) with sensor connected
	connection	via adapter to all common AC supplies (Europe,
		UK, USA, Australia)
Dimensions (W x H x L)	USB adapter	48 mm × 45 mm × 140 mm
		$(1.89 \text{ in} \times 1.77 \text{ in} \times 5.51 \text{ in})$
	length including connecting cable	approx. 2 m (78.74 in)
	plug-in power supply	52 mm × 73 mm × 110 mm
		$(2.05 \text{ in} \times 2.87 \text{ in} \times 4.33 \text{ in})$
	length of line to USB adapter	approx. 2 m (78.74 in)
Weight	USB adapter	< 0.2 kg (0.44 lb)
	plug-in power supply	< 0.3 kg (0.66 lb)

R&S®NRP-Z4 passive USB adapter cable

Application		for connecting an R&S®NRP-Zxx power sensor to a USB host (PC or Rohde & Schwarz measuring instrument with type A receptacle)
Connectors	sensor side	ODU Mini-Snap [®] L series, size 2, six-pole receptacle
	host side	USB type A plug
Dimensions (length)	model .02	approx. 2 m (78.74 in)
	model .04	approx. 0.5 m (19.69 in)

R&S®NRP-Z5 sensor hub

Application		for connecting up to four R&S®NRP-Zxx power
, ipplication		sensors to
		a USB host (PC or Rohde & Schwarz
		measuring instrument with type A receptacle)
		a Rohde & Schwarz measuring instrument
		(other than the R&S®NRP) with a circular
		sensor connector (ODU Mini-Snap® L series,
		size 2, six-pole receptacle)
Trigger input	maximum voltage	±8 V
	logic level	
	low	< 0.8 V
	high	> 2.0 V
	input impedance	approx. 10 kΩ
	minimum pulse width	35 ns (without R&S®NRP-Z2 extension cable)
Trigger output	high-level output voltage, no load	< 5.3 V
99	high-level output voltage, 50 Ω load	> 2.0 V
Power supply	voltage/power	12 V to 24 V (DC) / 24 W
	source	AC adapter supplied with the equipment or
	554.55	equivalent DC voltage source
		no supply from extra-low voltage supply system
		or via secondary cables > 30 m (98.43 ft)
Connectors	sensors A to D	ODU Mini-Snap® L series, size 2, six-pole
		receptacle
	USB host	USB type B receptacle (certified USB 2.0 high-
	302301	speed cable supplied with the equipment)
	for Rohde & Schwarz instrument	ODU Mini-Snap® L series, size 2, six-pole plug
	trigger input, trigger output	BNC receptacle
	power supply	receptacle for DC barrel connector,
	ромог одругу	\varnothing 5.5 mm × \varnothing 2.1 mm × 9.5 mm; inner
		conductor is positive pole
Dimensions (W × H × L)	sensor hub	140.6 mm × 36.6 mm × 138 mm
Emicholone (VV X I I X E)	Concor mas	(5.54 in × 1.44 in × 5.43 in)
Weight	excluding accessories	< 0.55 kg (1.21 lb)
AC adapter	input voltage/frequency	100 V to 240 V / 50 Hz to 60 Hz
, to adapte.	tolerance	±10 % for voltage, ±3 Hz for frequency
	input connector	C14 receptacle in line with IEC 60320
	output voltage/power	12 V (DC) / 36 W
	length of secondary cable	approx. 1.2 m (47.24 in)
	dimensions (W × H × L)	120 mm × 52 mm × 31 mm
	annonoiono (TTATTAL)	$(4.72 \text{ in} \times 2.05 \text{ in} \times 1.22 \text{ in})$
	weight	< 0.3 kg (0.66 lb)

R&S®NRP base unit

Application		multichannel power meter
Sensors		R&S [®] NRP-Zxx series
Measurement channels	R&S [®] NRP	1
	R&S [®] NRP + R&S [®] NRP-B2	2
	R&S [®] NRP + R&S [®] NRP-B2 + R&S [®] NRP-B5	4
Measurement functionality	single-channel	see sensor specifications, plus: relative measurement referenced to result or user-selectable reference value, storage of minima and maxima (max, min, max – min), limit monitoring
	display	
	absolute	in W, dBm and dBμV
	relative	in dB, as change in percent (Δ %) or as quotient
	multichannel	simultaneous measurement in up to 4 channels; individual results, ratios, relative ratios ⁵³ or difference of results of 2 channels can be displayed (for all functions except Trace & Statistics)
	display	, reaction of the control of the con
	ratio	in dB, as change in percent (Δ %), as quotient or as one of the following impedance matching parameters: SWR, return loss, reflection coefficient
	relative ratio 53	in dB, as change in percent (Δ %) or as quotient
	difference	difference of powers in W, expressed in W or dBm
Display	type	LC graphics screen, ¼ VGA (320 x 240) pixel, full-size, monochrome, transflective with adjustable backlighting
	result representation	
	numeric measurements	up to 4 results can simultaneously be displayed in separate windows (full-size, ½ size or ¼ size, depending on number of results)
	format	digital, digital and analog
	resolution	
	digital values	selectable in 4 steps: 0.001 dB/0.01 %/4½ digits (W, quotient) 0.01 dB/0.1 %/3½ digits (W, quotient) 0.1 dB/1.0 %/2½ digits (W, quotient) 1 dB/1.0 %/2½ digits (W, quotient)
	analog display	depending on user-definable scale end values
	additional information	min, max, max – min, mean, stdev of recent
		measurements, frequency
	measurement of power versus time	one trace can be displayed in one full-size window
	additional information	marker, gate and timeslot measurements within view area
	power envelope statistics	CCDF, CDF and PDF versus power level in dBm or referenced to average power
	additional information	marker measurements

R&S®NRP base unit (continued)

Manual operation	,	Windows-oriented menus with hotkeys for the
mandar operation		most important functions
Remote control	systems	IEC 60625.1 (IEEE488.1) and
Temote control	Systems	IEC 60625.2 (IEEE488.2)
	command set	SCPI-1999.0
	IEC/IEEE bus	00111333.0
	interface functions	SH1, AH1, L3, LE3, T5, TE5, SR1, PP1, PP2,
	interface functions	RL1, DC1, E2, DT1, C0
	connector	24-pin Amphenol (female)
	connector USB TMC	24-pin Amphenoi (lemale)
		LICD to man D. manageta alla
	connector	USB type B receptacle
	Ethernet LAN 10/100BaseT (R&S®NR	• /
	connector	RJ-45 modular socket
Firmware download		from the R&S®NRP toolkit via the USB type B
		receptacle using a Windows-compatible program
Inputs/outputs (front panel)	A, B (R&S [®] NRP-B2 option)	test inputs for R&S®NRP-Zxx power sensors
	connector	ODU Mini-Snap® L series, size 2, six-pole
		receptacle
	POWER REF (R&S®NRP-B1 option)	1 mW/50 MHz test signal output
	connector	N (female)
Innuta/outnuta/roor nanel)	OUT1	iv (leniale)
Inputs/outputs (rear panel)		Analan Bass/Fail OFF
	modes	Analog, Pass/Fail, OFF
	Analog	recorder output; user-definable linear relation to
	5 (5)	measurement result of display windows 1 to 4
	Pass/Fail	limit indicator with two user-selectable output
		voltages for identifying the Pass and Fail states
		in the case of limit monitoring
	OFF	0 V
	voltage range	0 V to +3.3 V
	setting accuracy	±1 % of voltage reading + (0/+8 mV)
	resolution	12 bit (monotone)
	output impedance	1 kΩ
	connector	BNC (female)
	IN/OUT 2	
	modes	Analog Out and Trigger In
	Analog Out	recorder output; user-definable linear relation to
	/thalog out	measurement result of display windows 1 to 4
	electrical characteristics	see OUT1
	Trigger In	input for trigger signal to sensors
	maximum voltage	-7 V/+10 V
		-1 V/+10 V
	logic level	.001/
	low	< 0.8 V
	high	> 2.0 V
	impedance	10 kΩ//100 pF
	connector	BNC (female)
	sensor input C (A); D (B)	test inputs for R&S®NRP-Zxx power sensors
	(R&S [®] NRP-B5/-B6 option)	
	connector	ODU Mini-Snap [®] L series, size 2, six-pole
		receptacle
Power supply	voltage, frequency	220 V to 240 V, 50 Hz to 60 Hz
		100 V to 120 V, 50 Hz to 400 Hz
	tolerance	±10 % for voltage and frequency
	apparent power	< 80 VA
Dimensions	W × H × D	274 mm × 112 mm × 267 mm
	81185	
		$(10.79 \text{ in} \times 4.41 \text{ in} \times 10.51 \text{ in})$

Options for the R&S®NRP base unit

R&S®NRP-B1 sensor check source

Sensor check source	application	as a power reference for testing sensors
	frequency	50 MHz
	power	1.00 mW
	uncertainty	
	+20 °C to +25 °C	0.85 %
	0 °C to +50 °C	1.00 %
	SWR	< 1.05
	RF connector	N (female)

R&S®NRP-B2 second test input

Second test input (B)	application	for R&S®NRP-Zxx power sensors (available as
		standard on front panel)
	connector	ODU Mini-Snap [®] L series, size 2, six-pole
		receptacle

R&S®NRP-B4 Ethernet/LAN interface

Ethernet LAN Interface	application	for R&S®NRP remote control
10/100BaseT	connector	RJ-45 modular socket

R&S®NRP-B5 third and fourth test input

Third (C) and fourth (D) test input	application	for R&S®NRP-Zxx power sensors (only on rear
		panel)
	connector	ODU Mini-Snap [®] L series, size 2, six-pole
		receptacle

R&S®NRP-B6 rear panel assembly

Rear-panel assembly	application	for test inputs A and B (only possible if the
		R&S®NRP-B5 option is not installed)

General data

Contoral data						
Temperature loading ⁵⁴	operating and permissible temperature range (in [] if different)	in line with IEC 60068				
	R&S®NRP base unit with options, R&S®NRP-Z3/-Z4 USB adapters, R&S®NRP-Z5 sensor hub	0 °C to +50 °C				
	R&S®NRP-Zxx power sensors, R&S®NRP-Z2 extension cables	0 °C [–10 °C] to +50 °C [+55 °C]				
	storage temperature range					
	R&S®NRP base unit with options, R&S®NRP-Z5 sensor hub	−20 °C to +70 °C				
	R&S®NRP-Zxx power sensors, R&S®NRP-Z2 extension cables and R&S®NRP-Z3/-Z4 USB adapters	−40 °C to +70 °C				
Climatic resistance	•	in line with IEC 60068				
	damp heat	+25 °C/+40 °C cyclic at 95 % relative humidity				
	R&S®NRP-Zxx power sensors,	with restrictions: non-condensing				
	R&S [®] NRP-Z3 USB adapters, R&S [®] NRP-Z5 sensor hub	J. Company of the com				
Mechanical resistance	vibration					
	sinusoidal	5 Hz to 55 Hz, max. 2 g				
		55 Hz to 150 Hz, 0.5 g constant,				
		in line with IEC 60068				
	random	10 Hz to 500 Hz, 1.9 g (RMS),				
		in line with IEC 60068				
	shock	40 g shock spectrum, in line with IEC 60068				
	air pressure					
	operation	795 hPa (2000 m) to 1060 hPa				
	transport	566 hPa (4500 m) to 1060 hPa				
Electromagnetic compatibility		in line with EN 61326, EN 55011				
Safety		in line with EN 61010-1				
Calibration interval	for R&S®NRP-Zxx power sensors and R&S®NRP-B1 power reference	2 years				

Appendix

Reading the uncertainty of three-path diode power sensors for relative power measurements

The example shows a level step of approx. 14 dB (-4 dBm \rightarrow +10 dBm) at 1.9 GHz and an ambient temperature of +28 °C for an R&S $^{\circ}$ NRP-Z21 power sensor.

Ordering information

Designation	Туре	Order No.		
Base unit				
Power Meter	R&S [®] NRP	1143.8500.02		
Options	·			
Sensor Check Source	R&S [®] NRP-B1	1146.9008.02		
Second Sensor Input (B)	R&S [®] NRP-B2	1146.8801.02		
Ethernet LAN Interface 10/100BaseT	R&S [®] NRP-B4	1146.9308.02		
3rd and 4th Sensor Inputs (C, D) 55	R&S [®] NRP-B5	1146.9608.02		
Rear-Panel Sensor Inputs A and B 56	R&S [®] NRP-B6	1146.9908.02		
Universal Power Sensors				
200 pW to 200 mW, 10 MHz to 8 GHz	R&S [®] NRP-Z11	1138.3004.02		
200 pW to 200 mW, 10 MHz to 18 GHz	R&S [®] NRP-Z21	1137.6000.02		
2 nW to 2 W, 10 MHz to 18 GHz	R&S [®] NRP-Z22	1137.7506.02		
20 nW to 15 W, 10 MHz to 18 GHz	R&S [®] NRP-Z23	1137.8002.02		
60 nW to 30 W, 10 MHz to 18 GHz	R&S [®] NRP-Z24	1137.8502.02		
200 pW to 200 mW, 10 MHz to 33 GHz	R&S [®] NRP-Z31	1169.2400.02		
Wideband Power Sensors				
1 nW to 100 mW, 50 MHz to 18 GHz	R&S [®] NRP-Z81	1137.9009.02		
Thermal Power Sensors				
1 μW to 100 mW, DC to 18 GHz	R&S [®] NRP-Z51	1138.0005.02		
1 μW to 100 mW, DC to 40 GHz	R&S [®] NRP-Z55	1138.2008.02		
300 nW to 100 mW, DC to 50 GHz	R&S [®] NRP-Z56	1171.8201.02		
300 nW to 100 mW, DC to 67 GHz	R&S [®] NRP-Z57	1171.8401.02		
Average Power Sensors	·			
200 pW to 200 mW, 9 kHz to 6 GHz	R&S [®] NRP-Z91	1168.8004.02		
2 nW to 2 W, 9 kHz to 6 GHz	R&S [®] NRP-Z92	1171.7005.02/42 ⁵⁷		
Level Control Sensors				
200 pW to 100 mW, 9 kHz to 6 GHz	R&S [®] NRP-Z98	1170.8508.02		
200 pW to 100 mW, 10 MHz to 18 GHz	R&S [®] NRP-Z28	1170.8008.02		
Power Sensor Modules	·			
4 μW to 400 mW, DC to 18 GHz	R&S [®] NRP-Z27	1169.4102.02		
4 μW to 400 mW, DC to 26.5 GHz	R&S [®] NRP-Z37	1169.3206.02		
Recommended extras				
Sensor Extension Cable to 3 m	R&S [®] NRP-Z2	1146.6750.03		
Sensor Extension Cable to 5 m	R&S [®] NRP-Z2	1146.6750.05		
Sensor Extension Cable to 10 m	R&S [®] NRP-Z2	1146.6750.10		
Panel-Mount Extension Cable to 5 m	R&S [®] NRP-Z2	1146.6750.15		
USB Adapter (active)	R&S [®] NRP-Z3	1146.7005.02		
USB Adapter (passive)	R&S [®] NRP-Z4	1146.8001.02		
Sensor Hub	R&S [®] NRP-Z5	1146.7740.02		
19" Rack Adapter	R&S [®] ZZA-T26	1109.4387.00		
(for one R&S®NRP power meter and				
one empty casing)				
19" Rack Adapter	R&S [®] ZZA-T27	1109.4393.00		
(for two R&S®NRP power meters)				

Footnotes

- Specifications apply to timeslots/gates with a duration of 12.5 % referenced to the signal period (duty cycle 1:8). For other waveforms, the following equation applies: lower measurement limit = lower measurement limit for Continuous Average mode / √(duty cycle).
- ² With a resolution of 256 pixels.
- ³ Transition regions can be lowered by as much as –20 dB using an adequate crossover setting.
- ⁴ To prevent aliasing in the case of signals with discrete modulation frequencies between 100 kHz and 1 MHz.
- ⁵ Time span prior to triggering, where the trigger signal must be entirely below the threshold level in the case of a positive slope and vice versa in the case of a negative slope.
- 6 Specifications expressed as an expanded uncertainty with a confidence level of 95 % (two standard deviations). For calculating zero offsets at higher confidence levels, use the properties of the normal distribution (e.g. 99.7 % confidence level for three standard deviations).
- Specifications apply to zeroing with a duration of 4 s. Zeroing for more than 4 s lowers uncertainty correspondingly (half values for 16 s).
- ⁸ Within one hour after zeroing, permissible temperature change ±1 °C, following a two-hour warm-up of the power sensor.
- Two standard deviations at 10.24 s integration time in Continuous Average mode, with aperture time set to default value. The integration time is defined as the total time used for signal acquisition, i.e. the product of twice the aperture time and the averaging number. Multiplying the noise specifications by √(10.24 s/integration time) yields the noise contribution at other integration times. Using a von Hann window function increases noise by a factor of 1.22.
- Expanded uncertainty (k = 2) for absolute power measurements on CW signals with automatic path selection and a user-defined crossover setting of 0 dB. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –35 dBm for the R&S®NRP-Z11/-Z21/-Z31/-Z91, –25 dBm for the R&S®NRP-Z22/-Z92 and –15 dBm for the R&S®NRP-Z24. The contribution of measurement noise depends on power and integration time and can be neglected below 0.01 dB.

Example: The uncertainty of a power measurement at 3.2 nW (–55 dBm) and 1.9 GHz is to be determined for an R&S®NRP-Z11. The ambient temperature is +29 °C and the averaging number is set to 32 in the Continuous Average mode with an aperture time of 20 ms.

Since path 1 is used for the measurement, the typical absolute uncertainty due to zero offset is 64 pW (typical) after external zeroing, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{3.2 \, nW + 64 \, pW}{3.2 \, nW} = 0.086 \, dB$$

Using the formula in footnote 9, the absolute noise contribution of path 1 is typically 40 pW × $\sqrt{(10.24 \text{ s}/(32 \times 2 \times 0.02 \text{ s}))}$ = 113 pW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{3.2 \, nW + 113 \, pW}{3.2 \, nW} = 0.151 \, dB$$

Combined with the uncertainty of 0.081 dB for absolute power measurements under the given conditions, the total expanded uncertainty is

$$\sqrt{0.086^2 + 0.151^2 + 0.081^2} dB = 0.192 dB.$$

The contribution of zero drift has been neglected in this case. It must be treated like zero offset if it is relevant for total uncertainty.

11 Expanded uncertainty (k = 2) for relative power measurements on CW signals with automatic path selection and a user-defined crossover setting of 0 dB. For reading the measurement uncertainty diagrams of universal, average and level control sensors, see the Appendix.

Specifications include calibration uncertainty (only if different paths are affected), linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –35 dBm for the R&S®NRP-Z11/-Z21/-Z31/-Z91, –25 dBm for the R&S®NRP-Z22/-Z92 and –15 dBm for the R&S®NRP-Z24. The contribution of measurement noise depends on power and integration time and can be neglected below 0.01 dB.

Example: The uncertainty of a power step from 1 mW (0 dBm) to 10 nW (–50 dBm) at 5.4 GHz is to be determined for an R&S®NRP-Z11. The ambient temperature is +20 °C and the averaging number is set to 16 for both measurements in the Continuous Average mode with an aperture time of 20 ms. For the calculation of total uncertainty, the relative contribution of noise, zero offset and zero drift must be taken into account for both measurements . In this example, all contributions at 0 dBm and the effect of zero drift have been neglected.

Since path 1 is used for the -50 dBm measurement, the typical absolute uncertainty due to zero offset is 64 pW after external zeroing, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{10 \text{ nW} + 64 \text{ pW}}{10 \text{ nW}} = 0.028 \text{ dB}$$

Using the formula in footnote 9, the absolute noise contribution of path 1 is typically 40 pW $\times \sqrt{(10.24 \text{ s}/(16 \times 2 \times 0.02 \text{ s}))} = 160 \text{ pW}$, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{10 \, nW + 160 \, pW}{10 \, nW} = 0.069 \, dB$$

Combined with the uncertainty of 0.054 dB for relative power measurements under the given conditions, the total expanded uncertainty is

$$\sqrt{0.028^2 + 0.069^2 + 0.054^2} dB = 0.092 dB$$

- Specifications are based on the assumption that the measurements follow each other so fast (at intervals of no more than 10 s) that the temperature of the power attenuator does not change significantly. In the case of the R&S®NRP-Z22/-Z92, the average power must not exceed 1 W to be compliant with accuracy specifications for relative power measurements.
- ¹³ Gamma correction activated.
- ¹⁴ Preceding sensor section (nominal value).
- ¹⁵ Preferably used with determined modulation when the aperture time cannot be matched to the modulation period. Compared to a uniform window, measurement noise is about 22 % higher.
- ¹⁶ For measuring the power of periodic bursts based on an average power measurement.
- 17 To increase measurement speed, the power sensor can be operated in buffered mode. In this mode, measurement results are stored in a buffer of user-definable size and then output as a block of data when the buffer is full. To enhance measurement speed even further, the sensor can be set to record the entire series of measurements when triggered by a single event. In this case, the power sensor automatically starts a new measurement as soon as it has completed the previous one.
- 18 This parameter enables power measurements on modulated bursts. The parameter must be longer in duration than modulation-induced power drops within the burst.
- ¹⁹ To exclude unwanted portions of the signal from the measurement result.
- ²⁰ If embedding is used in conjunction with the R&S®NRP-Z22/-Z23/-Z24/-Z92, the data of the RF power attenuator preceding the sensor section is taken into account (automatically upon power-up of the sensor).
- Valid for Repeat mode, extending from the beginning to the end of all transfers via the USB interface of the power sensor. Measurement times under remote control of the R&S®NRP base unit via IEC/IEEE bus are approximately 2.5 ms longer, extending from the start of the measurement up to when the measurement result has been supplied to the output buffer of the R&S®NRP.
- 22 Integration time is defined as the total time used for signal acquisition, i.e. taking into account the chosen aperture/acquisition time and the averaging number.
- Magnitude of measurement error referenced to an ideal thermal power sensor that measures the sum power of carrier and harmonics. Specifications apply to automatic path selection and power levels up to +20 dBm, referenced to the input of the sensor section. Use the nominal RF attenuation of the R&S®NRP-Z22/-Z23/-Z24/-Z92 to calculate the equivalent input power for these power sensors. Above the mentioned power limit, specifications must be raised by a factor of 1.25 per 1 dB rise in power level. Within a subrange, measurement errors are proportional to the measured power in W. Specifications apply to 10 μW (–20 dBm) for path 1, 1 mW (0 dBm) for path 2 and 100 mW (+20 dBm) for path 3, referenced to the input of the sensor section.
- ²⁴ Measurement error referenced to a CW signal of equal power and frequency. Specifications apply to automatic path selection and power levels up to +20 dBm, referenced to the input of the sensor section. Use the nominal RF attenuation of the R&S®NRP-Z22/-Z23/-Z24/-Z92 to calculate the equivalent input power for these power sensors. Above the mentioned power limit, specifications must be raised by a factor of 1.25 per 1 dB rise in power level. Within a subrange, measurement errors are proportional to the measured power in W. Specifications apply to 10 μW (–20 dBm) for path 1, 1 mW (0 dBm) for path 2 and 100 mW (+20 dBm) for path 3, referenced to the input of the sensor section.
- $^{25} \ \ \text{Applies to the R\&S}^{\$} \text{NRP-Z11/-Z21/-Z31/-Z91 and the sensor section of the R\&S}^{\$} \text{NRP-Z22/-Z23/-Z24/-Z92, referenced to 0 dBm}$
- Expanded uncertainty (k = 2) for absolute power measurements on CW signals at the calibration level (-20 dBm for path 1, 0 dBm for paths 2 and 3) within a temperature range from +20 °C to +25 °C and at the calibration frequencies (10 MHz, 15 MHz, 20 MHz, 30 MHz, 50 MHz, 100 MHz; in steps of 250 MHz from 250 MHz to the upper frequency limit). Specifications include zero offset and display noise (up to a 2σ value of 0.004 dB).
- ²⁷ Specifications include sensor section and RF power attenuator.
- ²⁸ With full video bandwidth. Reduce the specified minimum levels according to the reduction of sampling noise at lower bandwidths.
- ²⁹ Specifications are valid from +15 °C to +50 °C ambient temperature. Below +15 °C, video bandwidth and single-shot bandwidth continuously decrease down to 20 MHz (typical) at 0 °C. Accordingly, the sensor rise time increases up to 50 ns for signals below 500 MHz and up to 20 ns for higher frequencies (typical at 0 °C).
- ³⁰ Specifications are valid at +23 °C ambient temperature for power levels ≤ -20 dBm and frequencies ≥ 500 MHz. For measurements at other temperatures levels and/or frequencies, use the multipliers from table A.
- Measured over a one-minute interval, at constant temperature, two standard deviations.
- 32 512k averages taken with the aperture time set to default (10 μs). The measurement noise with other averaging numbers can be calculated by applying the multipliers indicated below:

Averaging number	512k	128k	32k	8k	2k	512	128	32	8
Integration time	10.5 s	3.9 s	1.0 s	0.25 s	60 ms	15 ms	3.8 ms	1.0 ms	0.24 ms
Noise multiplier	1	2	4	8	16	32	64	128	256

Using a von Hann window function further increases noise by a factor of 1.22. Integration time is defined as the total time used for signal acquisition, i.e. the product of twice the aperture time and the averaging number.

The measurement noise is always minimal for the default aperture time. Increasing the aperture time above this value is only useful for suppressing modulation-induced fluctuations of the measurement result, e.g. by matching the aperture time to the modulation period.

Example: The power to be measured is 40 nW (-44 dBm) at 12 GHz in the Continuous Average mode; ambient temperature +35 °C; averaging number set to 32k with an aperture time of 10 µs (1 s integration time).

The typical absolute uncertainty due to zero offset is 220 pW at +23 °C. From table A, a multiplier of 1.4 can be taken to read a typical zero offset of 308 pW at +35 °C. The corresponding relative measurement uncertainty can be calculated as follows:

$$10 \times lg \frac{40 \text{ nW} + 308 \text{ pW}}{40 \text{ nW}} = 0.033 \text{ dB}$$

Using the noise multiplier (4) from footnote 32 and the multiplier (1.4) from table A, the absolute noise contribution is typically 110 pW x 4 x 1.4 = 616 pW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{40 \, nW + 616 \, pW}{40 \, nW} = 0.066 \, dB$$

Combined with the value of 0.18 dB specified for the uncertainty of absolute power measurements at 12 GHz, the total expanded uncertainty is

$$\sqrt{0.18^2 + 0.033^2 + 0.066^2} dB = 0.195 dB$$

The contribution of zero drift has been neglected in this case. It must be treated like zero offset if it is relevant for total uncertainty.

- Magnitude of measurement error referenced to an ideal thermal power sensor that measures the sum power of carrier and harmonics. For power levels below -10 dBm, the specifications for $2 \times f_0$ ($3 \times f_0$) can be lowered by a factor of $\sqrt{10}$ (10) per 10 dB below -10 dBm. Example: At 12 GHz/-30 dBm, the influence of the second harmonic, suppressed by 20 dBc, will cause an error of max. 0.25 dB \div 10 = 0.025 dB. Standard uncertainties can be assumed to be half the values.
- 35 Expanded uncertainty (k = 2) for absolute power measurements on CW signals at the calibration level (–10 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies (50/55/60/68/80/100/200/300/400/499.99/500/600/720/850/1000/1500 MHz; R&S®NRP-Z81: in steps of 0.5 GHz from 2 GHz to the upper frequency limit; Specifications include zero offset and display noise (up to a 2σ value of 0.01 dB).
- Expanded uncertainty (k = 2) for absolute power measurements. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –15 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB.

Example: The power to be measured with an R&S®NRP-Z51 is 5 µW (–23 dBm) at 0.9 GHz; ambient temperature +29 °C; averaging number set to 16 in Continuous Average mode with an aperture time of 20 ms. The typical absolute uncertainty due to zero offset (after external zeroing) is 33 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{5 \mu W + 33 nW}{5 \mu W} = 0.029 \, dB$$

Using the formula in footnote 9, the absolute noise contribution is typically 20 nW $\times \sqrt{(10.24 \text{ s}/(16 \times 2 \times 0.02 \text{ s}))} = 80 \text{ nW}$, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{5 \mu W + 80 nW}{5 \mu W} = 0.069 dB$$

Combined with the value of 0.066 dB specified for the uncertainty of absolute power measurements, the total expanded uncertainty is

$$\sqrt{0.066^2 + 0.029^2 + 0.069^2} dB = 0.100 dB$$

- Expanded uncertainty (k = 2) for relative power measurements. Specifications include linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above -15 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB. See also the example in footnote 11 for taking into account zero offset and noise with relative measurements.
- 38 Expanded uncertainty (k = 2) for absolute power measurements at the calibration level (0 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies (10 MHz, 50 MHz, 100 MHz; in steps of 500 MHz from 500 MHz to the upper frequency limit). Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB).
- ³⁹ Error of an absolute power measurement with respect to temperature.
- ⁴⁰ Expanded uncertainty for relative power measurements referenced to the calibration level (0 dBm), excluding zero offset, zero drift and measurement noise.

Expanded uncertainty (k = 2) for absolute power measurements on CW signals. Specifications include calibration uncertainty, linearity, reflection of sensor-induced harmonics on the DUT, and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset and zero drift can be neglected for power levels above –35 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.02 dB.

⁴¹ Expanded uncertainty (k = 2) for absolute power measurements. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset and measurement noise must additionally be taken into account when measuring low powers, whereas zero drift is negligible over the entire measurement range. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –20 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB.

Example: The power to be measured with an R&S®NRP-Z56 is 5 µW (-23 dBm) at 48 GHz; ambient temperature +29 °C; averaging number set to 64 in Continuous Average mode with an aperture time of 5 ms (default).

The absolute uncertainty due to zero offset (after external zeroing) is 25 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{5 \mu W + 25 nW}{5 \mu W} = 0.022 dB$$

Using the formula in footnote 9, the absolute noise contribution is 25 nW \times $\sqrt{(10.24 \text{ s/}(64 \times 2 \times 0.005 \text{ s}))}$ = 100 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{5 \mu W + 100 nW}{5 \mu W} = 0.086 dB$$

Combined with the value of 0.148 dB specified for the uncertainty of absolute power measurements at 48 GHz and +29 °C ambient temperature, the total expanded uncertainty is

$$\sqrt{0.148^2 + 0.022^2 + 0.086^2} dB = 0.173 dB$$

- ⁴² Expanded uncertainty (k = 2) for relative power measurements. Specifications include linearity and temperature effect. Zero offset and measurement noise must additionally be taken into account when measuring low powers, whereas zero drift is negligible over the entire measurement range. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –20 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB. See also the example in footnote 11 for taking into account zero offset and noise with relative measurements.
- ⁴³ With activated auto delay, the beginning of a measurement sequence is delayed so that settled readings are obtained even if the measurement command (remote trigger) coincides with a signal step up to ±10 dB.
- Expanded uncertainty (k = 2) for absolute power measurements at the calibration level (0 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies (DC, 10 MHz, 50 MHz, 100 MHz; in steps of 500 MHz from 500 MHz to the upper frequency limit). Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB).
- ⁴⁵ Equivalent source SWR.
- ⁴⁶ Between RF input and RF output (test port).
- Expanded uncertainty (k = 2) for absolute power measurements up to 100 mW (+20 dBm) at the calibration frequencies (see footnote 49). Specifications include calibration uncertainty, linearity, temperature effect and interference from the wave reflected by the load on the RF output. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. If the measured power exceeds 100 mW, the power coefficient of the integrated power splitter must be taken into account (see footnote 51). As a rule of thumb, the contribution of zero offset can be neglected for power levels above –7 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB.

Example: The power to be measured with an R&S®NRP-Z37 is 50 μW (–13 dBm) at 19 GHz; ambient temperature +29 °C; averaging number set to 64 in Continuous Average mode with an aperture time of 20 ms.

The maximum absolute uncertainty due to zero offset (after external zeroing) is 400 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{50 \, \mu W + 400 \, nW}{50 \, uW} = 0.035 \, dB$$

Using the formula in footnote 9, the maximum absolute noise contribution is 240 nW $\times \sqrt{(10.24 \text{ s}/(64 \times 2 \times 0.02 \text{ s}))} = 480 \text{ nW}$, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{50 \mu W + 480 nW}{50 \mu W} = 0.042 dB$$

Combined with the value of 0.137 dB specified for the uncertainty of absolute power measurements, the total expanded uncertainty is

$$\sqrt{0.035^2 + 0.042^2 + 0.137^2} dB = 0.148 dB$$

- Expanded uncertainty (k = 2) for relative power measurements. Specifications include linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above -7 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB. See also the example in footnote 11 for taking into account zero offset and noise with relative measurements.
- ⁴⁹ Expanded uncertainty (k = 2) for absolute power measurements at the calibration level (0 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies. Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB). The load on the RF signal output must be of a low-reflection type (SWR < 1.05) or load interference correction must be applied.</p>
 - Calibration frequencies: 0.1/0.5/1/3/5/10/50/100 MHz; in steps of 100 MHz from 100 MHz to the upper frequency limit.
- ⁵⁰ Error of an absolute power measurement with respect to temperature, taking into account the power sensor section, the power splitter and the RF cable (temperature-dependent interference from the load on the RF signal output due to phase change).
- Maximum change of insertion loss of the power splitter with respect to input power, leading to an equivalent measurement error of the power sensor module and a change of the power available at the RF signal output. The power coefficient should be taken into account if the input power exceeds 100 mW (+20 dBm).

Values in () represent residual error contribution after numeric load interference correction. This correction function requires the complex reflection coefficient of the load to be transferred to the power sensor module. The residual error contribution of an R&S®FSMR26 at the RF signal output does not exceed ±0.003 dB from DC to 2 GHz, ±0.04 dB up to 18 GHz, and ±0.07 dB up to 26.5 GHz.

⁵² Measurement error due to interference of the wave reflected by a mismatched load on the RF signal output. Specifications are indicated for a 0.1 reflection coefficient of the load. Since the load interference error is proportional to the amplitude of the reflected wave, half (twice) the values will be encountered for a reflection coefficient of 0.05 (0.2). The error introduced by an R&S[®]FSMR26 at the RF signal output does not exceed ±0.06 dB from DC to 2 GHz, ±0.10 dB up to 18 GHz, and ±0.14 dB up to 26.5 GHz.

⁵³ Quotient of a measured and a stored power ratio, e.g. for measuring gain compression of amplifiers.

⁵⁴ The operating temperature range defines the span of ambient temperature in which the instrument complies with specifications. In the permissible temperature range, the instrument is still functioning but compliance with specifications is not warranted.

⁵⁵ R&S[®]NRP-B2 option required.

⁵⁶ Not in conjunction with the R&S[®]NRP-B5 option.

⁵⁷ Order No. 1171.7005.42 includes an R&S[®]NRP-Z4 USB adapter cable (model .04; 0.5 m long).

Service you can rely on

- Worldwide
- Local and personalized
- Customized and flexible
- Uncompromising quality
- Long-term dependability

About Rohde & Schwarz

Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established more than 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Environmental commitment

- Energy-efficient products
- Continuous improvement in environmental sustainability
- ISO 14001-certified environmental management system

ISO 9001

Rohde & Schwarz GmbH & Co. KG

www.rohde-schwarz.com

Regional contact

- Leurope, Africa, Middle East+49 89 4129 137 74customersupport@rohde-schwarz.com
- North America1 888 TEST RSA (1 888 837 87 72)customer.support@rsa.rohde-schwarz.com
- Latin America
- +1 410 910 79 88 customersupport.la@rohde-schwarz.com
- Asia/Pacific +65 65 13 04 88
- customersupport.asia@rohde-schwarz.com

R&S° is a registered trademark of Rohde & Schwarz GmbH & Co. KG Trade names are trademarks of the owners | Printed in Germany (sk) PD 5213.5539.22 | Version 03.00 | August 2010 | R&S°NRP and R&S°NRP-Zxx Subject to change

© 2009 - 2010 Rohde & Schwarz GmbH & Co. KG | 81671 München, Germany